Status and plan of Hybrid Module for CEPC-TPC

Huirong

2015.07.10

Outline

Status of CEPC-TPC Status of Hybrid Module Plan and Critical R&D

Requirements for TPC

Performance/ Design Goals

Momentum resolution at B=3.5T	δ(1/pt)≈10 ⁻⁴ /GeV/c TPC only
δ_{point} in r Φ	<100µm (avg for straight-radial tracks)
δ_{point} in rz	≈0.4~1.4mm (for zero – full drift)
Inner radius	329mm
Outer radius	1800mm
Half length	2350mm
TPC material budgt	$\approx 0.05 X_0$ including the outer field cage in r
	<0.25X ₀ for readout endcaps in z
Pad pitch/no. padrows	≈1mm×4~10mm/≈200
2-hits resolution in rΦ	≈2mm (for straight-radial tracks)
Performance	>97% efficiency for TPC only (pt > 1GeV/c)
	>99% all tracking (pt > 1GeV/c)

Similar requirements as for the ILD-TPC

Beam structure (different)

In the case of ILD-TPC

- Bunch-train structure of the ILC beam (one ~1ms train every 200 ms)
- Bunches time ~554ns
- Duration of train ~0.73ms
- Used Gating device
- Open to close time of Gating: 50µs+0.73ms

In the case of CEPC-TPC

- Bunch-train structure of the CEPC beam (one bunch every 3.63µs)
- No Gating device with open and close time

Beam structure of CEPC

ILD-TPC Modules

- **DESY** modules:
 - Size: 220mm × 170mm
 - 1.26mm×5.85mm/Pad, Staggered
 - 28 pad rows, 4829 channels per module
 - Thin frames 1mm all around
 - 20 HV connected at top

- KEK module:
 - Size: 220mm × 170mm
 - 1.2mm×5.4mm/Pad, Staggered
 - 28pad rows (176-192 pads/row)
 - **5152** pad per module
 - 10mm wide frame3 at top/bottom
 - No frames at sides

Plan to design the common pad plate in 2015

Hybrid Module for CEPC-TPC

- One GEM as the pre-amplifier device
- GEM as the device to reduce the ion back flow
- One resistive Micromegas as the main amplifier device
- Low material budget modules
- Active area:50mm×50mm
- Considered the ion feed back

GEM+Micromegas detector

GEM+Micromegas assembled

Hybrid Module for CEPC-TPC

Gain of GEM+Micromegas VS Standard Micromegas

CEPC-TPC Hybrid Module

Energy spectrum@55Fe

Status of CEPC-TPC

In the case of CEPC-TPC

- Funding support from IHEP
- Three years program
- Low material budget modules design and R&D
- Active area:100mm×100mm
- Based on the existing research
- Considered the ion feed back

In the case of ILD-TPC

- Participation ILD-TPC cooperation group
- Simulation and beam test ...
- Involved in common module design

Plan and critical R&D

- Reconsider performance parameters; need input/check from CEPC performance studies:
 - $\hfill\square$ Simulation of single point resolution RP and point resolution z
 - Checked and optimized detector geometry
 - □ Two-hit sepration (i.e. of occupancy in the beam structure)
 - dE/dx
 - What is needed?
 - Pad size and Hybrid detector test
- Gas selection and simulation
 - Long drift gas studies
 - Fast drift velocity
 - Low electric field
- ILD-TPC cooperation
 - ILD-TPC Large prototype (understanding, learning, joining?)
 - Beam test and data analysis

Things to be done Short time scale 1~3 years To CDR of CEPC

Plan and critical R&D

- Ion back flow
 - Optimized of Hybrid detector with pre-amplifier GEM detector
 - Optimized of the resistive Micromegas
 - Hybrid detector performance
- UV laser test for modules
 - Calibration in the working gas
 - Alignment in the modules
- Electronics and DAQ (~?)
 - Common
 - ...
- Gas Supply and HV supply
 - Long HV stability
 - Overall temperature uniformity and stability

...

Thanks!