

1

TPC and R&D Activities at Saclay

David Attie, Fabrice Couderc, Sergei Ganjour, Marc Riallot, Philippe Schwemling, Boris Tuchming

Introduction

- Interest at Saclay for the tracking system of the future detector
 - Tracking design and optimization
 - Study performance of TPC in environment with high luminosity and small bunch spacing \rightarrow Mini TPC project

Tracking studies

CEA - Saclay

- Optimize detector geometry and design
- Up to now: more a learning and thinking phase
 - Use a custom-made (very fast) tool, however limited.
 - Use Atlas IDres tool

ILD (TDR) layout as encoded

The current layout of the proposed vertex detector is summarised in Table III-2.1. It is based

extensive simulation and technical studies. The parameters are considered conservative.

		R (mm)	z (mm)	$ \cos \theta $	σ (μ m)	Readout time (μ s)
-	Layer 1	16	62.5	0.97	2.8	50
	Layer 2	18	62.5	0.96	6	10
	Layer 3	37	125	0.96	4	100
	Layer 4	39	125	0.95	4	100
	Layer 5	58	125	0.91	4	100
	Layer 6	60	125	0.9	4	100

T								
Table III-2.2 Main parameters of the	SIT (baseline = false double-sided Si microstrips)							
central silicon systems	Geometry			Characteristics		Material		
SIT, SET, and ETD.	R [mm]	Z [mm]	$\cos \theta$	Resolution R- ϕ [μ m]	Time [ns]	X_0 [%]		
	153	368	0.910	R: σ=7.0	307.7 (153.8)	0.65		
	300	644	0.902	z: σ=50.0	<i>σ</i> =80.0	0.65		
	SET (baseline = false double-sided Si microstrips)							
	Geometry			Characteristics		Material		
	R [mm]	Z [mm]	$\cos \theta$	Resolution R- ϕ [μ m]	Time [ns]	X_0 [%]		
	1811	2350	0.789	R: σ=7.0	307.7 (153.8)	0.65		
	ETD (baseline = single-sided Si micro-strips)							
	Geometry			Characteristics		Material		
	R [mm]	Z [mm]	$\cos \theta$	Resolution R-	φ [μm]	X_0 [%]		
	419.3-1822.7	2420	0.985-0.799	x: σ=7.	0	0.65		

2.2.	The	ILD	silicon	tracki

Table III-2.3 Layout of the Forward Tracking Disks. The quoted single hit resolution for the pixel disk depends on its technological implementation which has also an effect on the material budget.

FTD (baseline: pixels for two inner disks, microstrips for the rest)						
R [mm]	Geometry Z [mm]	$\cos \theta$	Characteristics Resolution R- ϕ [μ m]	Material RL [%]		
39-164 49.6-164 70.1-308 100.3-309 130.4-309 160.5-309 190.5-309	220 371.3 644.9 1046.1 1447.3 1848.5 2250	0.985-0.802 0.991-0.914 0.994-0.902 0.994-0.959 0.995-0.998 0.996-0.986 0.996-0.990	σ=3-6 σ=7.0	0.25-0.5 0.25-0.5 0.65 0.65 0.65 0.65 0.65		

2.2. The ILD silicon tracking system

Comparison of TPC only vs TPC+Silicon

- Encode full ILD geometry easily in Idres
- Material budget as example of output

Comparison of TPC only vs TPC+Silicon

Momentum resolution for different geometry

Used custom fast tool here

TRACKER RESOLUTION VS TPC

Question whether a state of the art TPC is overkill given the silicon detectors (vertex and outer shell)...preliminary... to be continued..

mini TPC project

CEA - Saclay

Goal

- Test TPC tracking reconstruction performance in the presence of spatial charge.
 - Spatial charge induced by
 - primary ions
 - secondary (amplification) ions back-flow

Goal

- Test TPC tracking reconstruction performance in the presence of spatial charge.
 - Spatial charge induced by
 - primary ions
 - secondary (amplification) ions back-flow
- MC-based estimate of distortions already studied Electron trajectories

• We want to test performance in real life with a mini-TPC

Mini-TPC project

- Recycle existing Chamber present at Saclay
 - need to re-design endplate
- Plug recent micromegas (resistive) detector
 - Relies on existing detector+electronics+DAQ developed for T2K and ILD R&D
- Transparent windows to send UV-rays through the chamber
 - UV rays yield photo-electrons at the cathode level
 - Photo-electrons drift toward micromegas
 - Micromegas amplification yields ion back-flow in drift space
 - Spatial charge is built in ~ 200 ms
- Measure tracking performance with cosmic muons (No Magnetic field)

The typical detecting device

First tests with a micro-TPC

- First tests of detector + electronics+ DAQ + reconstruction software
 - Use of a small chamber ~20 cm x 20cm x o(2 cm drift)
 - Trigger on cosmics with PM+scintillators

- No zero suppression
- Sampling frequency : 100 MHz
- Shaper peaking time : 200 ns
- Very long time frames : 511 clock cycles

1728 channels

First look at data

Understand detector responses Test capabilities to reconstruct tracks

ADC counts

Timing differences (drift distance)visible Pulse shapes differences also visible

Some track resolution studies, using a crude tracking algorithm

The chamber

CAD

UV light

Hamamatsu X2D2 Hamamatsu L10904 http://www.hamamatsu.com/jp/en/L10904.html

Between 200 and 240 nm $\phi \sim 0.07 * 20 \mu$ W/cm-2 Photon flux: $\phi_{\gamma} \sim \phi / hc/\lambda$ 0.07E-6*20* 200E-9/(6.6E-34*3E8)=1.4 10¹² photon/s/cm²

Typical needs to fill charge in TPC : $\sim 3 \ 10^5$ photo-electrons/s

WAVELENGTH (nm)

Two Viewports

- Solid angle effect+UV absorption+ Quantum efficiency= non homogeneous photo-electrons yield
- Two viewports for better control on photon-electron yield homogeneity
- Will use CaF₂ viewport of diameter 3.8cm

Final design ready

Tallement: Aucun Patection : Aucun Example and Aller 1 Ech : 0,5 Messee M31 ja13 The : FCC_TPC-MICROMEGAS

Status and plans

- TPC status
 - TPC endplate ordered
 - TPC viewports ordered
 - Should be mounted during summer
- Bench-test
 - Shelves ready
 - Triggering system done (2 scintillators 50x60cm)
 - Need 2 micromegas detector for hodoscope
- UV light
 - Need to design shutter system to control flux

Should be running shortly after Summer

Conclusion

- Activities have been ramping up in the past few months
- Started to look at many things
- Expect fun times ahead very soon with mini-TPC project
 - Commissioning of the detector
 - Data taking
 - Data analysis