Status Update: HH Production @ NLO

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) Stephen Jones

Work With: Borowka, Greiner, Heinrich, Kerner, Schlenk, Schubert, Zirke

1. HEFT Results & Motivation

2. Virtual MEs

In Progress

- Tool Chain
- Integral Reduction
- Numerical Computation of Master Integrals
- 3. Real Radiation & Cross-checks

Gluon Fusion

 LO (1-loop), Dominated by top (bottom contributes ~1%) Glover, van der Bij 88

- 2. Born Improved NLO H(iggs)EFT $m_T \rightarrow \infty$ K \approx 2 Plehn, Spira, Zerwas 96, 98; Dawson, Dittmaier, Spira 98
- A. Including m_T in Real radiation -10% Maltoni, Vryonidou, Zaro 14

- 0% Steinhauser 15
- B. Including $O(1/m_T^{12})$ terms in Virtual MEs ±10% Grigo, Hoff, Melnikov, Steinhauser 13; Grigo, Hoff 14; Grigo, Hoff, Steinhauser 15
- 3. Born Improved NNLO HEFT +20% De Florian, Mazzitelli 13 Including matching coefficients Grigo, Melnikov, Steinhauser 14 Including terms $\mathcal{O}(1/m_T^{12})$ in Virtual MEs Grigo, Hoff, Steinhauser 15 NNLL + NNLO Matching +9% de Florian, Mazzitelli 15

Virtual MEs

Goal: Compute $gg \rightarrow HH$ @ NLO (2-Loop) including m_T Virtual MEs: $gg \rightarrow HH$ $q\bar{q} \rightarrow HH$ \checkmark **NNLO**

Virtual MEs: Tool Chain

Partial cross-check: 2 Implementations

Integral Reduction

Tensor integrals rewritten as inverse propagators

Scalar products:

 $S = \frac{l(l+1)}{2} + lm$

:

l=2 # Loops m=3 # L.I External momenta

$$S = 9$$

Choose 8 Integral families with 9 propagators each

Integrals	1-loop	2-loop	Reduction with: REDUZE, LiteRed, FIRE
Direct	63	9865	Simplification, fix:
+ Symmetries	21	1601	$m_T = 173 \text{ GeV}, m_H = 125 \text{ GeV}$ (Mostly) Finite Basis
+ IBPs	8	~260-270 (currently 327)	Panzer 14; von Manteuffel, Panzer, Schabinger 15

Master Integrals

Known Analytically:

Numeric Evaluation:

Up to 4-point, 4 scales s, t, m_T^2, m_H^2 SecDec

Master Integrals: Numerics

SecDec used at amplitude level:

- Avoid reevaluation of integrals
- Target accuracy of integrals based on contribution to amplitude + time/evaluation
- Continue integration until desired amplitude precision reached

Current Status: Cross-checks

- Single Higgs Part vs Sushi OK Harlander, Liebler, Mantler 13
- Pole cancellation OK (4+ digits)
- H & HH vs HEFT Underway

Thanks: Gudrun Heinrich

Next Step:

Run on cluster

(Hydra, Garching)

Check & Run

Real Radiation

GoSam for MEs + Catani-Seymour Dipole Subtraction Cullen et al. 14 Catani, Seymour 96

Checks:

 $gg \rightarrow Hg$ etc. reproduced & compared to Sushi Independence of dipole-cut α parameter Nagy 03

Real Radiation + HEFT

Approx/Full Reals + Virtuals as asymptotic expansion in $1/m_T^2$ (q2e/exp+ Reduze + matad) Harlander, Seidensticker, Steinhauser 97,99; Steinhauser 00

PDF4LHC15_nlo_30_pdfas

$$m_H = 125 \text{ GeV}$$

 $m_T = 172.5 \text{ GeV}$
Uncertainty:
 $\mu_R = \mu_F = \frac{m_{HH}}{2}$
 $\mu_R = \mu_F \in \left[\frac{\mu_0}{2}, 2\mu_0\right]$
PDF with (without) α_s variation

	$gg \to HH$ total cross section [fb]			
\sqrt{s} [TeV]	NLO HEFT + Full Reals	Maltoni, Vryonidou, Zaro		
7	$5.939 {}^{+17\%}_{-16\%} \pm 4.6\%(\pm 4.1\%)$	$5.82 \ ^{+18\%}_{-16\%} (\pm 4.0\%)$		
8	$8.590 \ ^{+17\%}_{-15\%} \pm 4.2\% (\pm 3.8\%)$	$8.63 \ ^{+17\%}_{-15\%} (\pm 3.6\%)$		
13	$28.83 \ ^{+15\%}_{-13\%} \pm 3.3\% (\pm 2.8\%)$	$28.4 \ ^{+16\%}_{-13\%} (\pm 2.7\%)$		
14	$34.15 \ ^{+15\%}_{-13\%} \pm 3.2\% (\pm 2.6\%)$	$34.0 \ ^{+15\%}_{-13\%} (\pm 2.6\%)$		

Thanks: Tom Zirke

Conclusion

HH Production

- Key measurement for probing the self coupling (HL-LHC era)
- HEFT implies that the NLO K factor for gluon fusion is large Unknown top mass effects give large uncertainty Full NLO corrections important

Ongoing/Future

- Complete checks of virtual amplitude
- Run on cluster, obtain enough phase-space points for accurate total cross-section prediction

Thank you for listening!

Backup

Approximate top-mass effects at NLO Slide: Tom $\sigma^{NLO}(p) = \int d\phi_3 \left[\left(d\sigma^R(p) \right)_{\epsilon=0} - \left(\sum_{\text{dipoles}} d\sigma^{LO}(p) \otimes dV_{\text{dipole}} \right)_{\epsilon=0} \right] \checkmark$ Zirke $+ \int d\phi_2 \left[d\sigma^V(p) + d\sigma^{LO}(p) \otimes \mathbf{I} \right]_{\epsilon=0}$ + $\int_0^1 dx \int d\phi_2 \left[d\sigma^{LO}(xp) \otimes (\mathbf{P} + \mathbf{K})(x) \right]_{\epsilon=0} \mathbf{\nabla}$ $d\sigma_{\exp,N} = \sum_{k=0}^{N} d\sigma^{(k)} \left(\frac{\Lambda}{m_t}\right)^{2k}$ $d\sigma^{V} + d\sigma^{LO}(\epsilon) \otimes \mathbf{I} \approx d\sigma^{V}_{\exp,N} \frac{d\sigma^{LO}(\epsilon)}{d\sigma^{LO}_{\exp,N}(\epsilon)} + d\sigma^{LO}(\epsilon) \otimes \mathbf{I}$ $= \left(d\sigma_{\exp,N}^{V} + d\sigma_{\exp,N}^{LO}(\epsilon) \otimes \mathbf{I} \right) \frac{d\sigma^{LO}(\epsilon)}{d\sigma^{LO}(\epsilon)}$ $\sqrt{t}, \sqrt{u}, m_h \}$

$$= \left(d\sigma_{\exp,N}^{V} + d\sigma_{\exp,N}^{LO}(\epsilon) \otimes \mathbf{I} \right) \frac{d\sigma^{LO}(\epsilon=0)}{d\sigma_{\exp,N}^{LO}(\epsilon=0)} + \mathcal{O}\left(\epsilon\right) \qquad \Lambda \in \left\{ \sqrt{s}, \right\}$$

- full real-emission matrix elements and dipoles
- virtual corrections as asymptotic expansion in 1/mt² with q2e/exp [Harlander, Seidensticker, Seidensticker] + Reduze [von Manteuffel, Studerus] + matad [Steinhauser]
- not directly comparable with [Grigo, Hoff, Steinhauser], (real radiation treated differently, expansion parameter $(m_H/m_t)^2$) ¹³

Mass effects in M_{HH} distribution (I)

- Known negative mass effects from real radiation ¹⁴

Mass effects in M_{HH} distribution (II)

 Slight tendency that -10% effect persists, but: spoilt cancellations? threshold effects?

Mass effects in p_T distribution (I)

Mass effects in p_T distribution (II)

17

Gluon Fusion (NLO HEFT)

G.H.S Top Mass Expansion

Grigo, Hoff, Steinhauser 15

LO vs LO HEFT

Slawinska, van den Wollenberg, Eijk, Bentvelsen 14

Self-Coupling Sensitivity

Production Channels

 $\sigma(pp \to HH + X) @ 13 \text{TeV}$

(VBF)

Baglio, Djouadi et al. 12

Production Channels

Diagrams

Form Factor Decomposition

 Δ

$$g(p_1)g(p_2) \to H(-p_3)H(-p_4)$$
 $\sum_{i=1}^{1} p_i = 0$

CDR (Dim = d)

Expose tensor structure: $\mathcal{M} = \epsilon^1_{\mu} \epsilon^2_{\nu} \mathcal{M}^{\mu\nu}$

Decompose: $\mathcal{M}^{\mu\nu} = a_{00}g^{\mu\nu} + a_{11}p_1^{\mu}p_1^{\nu} + a_{12}p_1^{\mu}p_2^{\nu} + a_{13}p_1^{\mu}p_3^{\nu}$ a_{ij} functions of Mandelstams + dTransversity: $g(p_1): \epsilon_{\mu}^1 p_1^{\mu} = 0$ $g(p_2): \epsilon_{\nu}^2 p_2^{\nu} = 0$ $g(p_2): \epsilon_{\nu}^2 p_2^{\nu} = 0$

Ward/Gauge: $p_{1\mu}\mathcal{M}^{\mu\nu} = 0$, $p_{2\nu}\mathcal{M}^{\mu\nu} = 0$ Gives further identities

Form Factor Decomposition

Expose tensor structure: $\mathcal{M} = \epsilon^1_{\mu} \epsilon^2_{\nu} \mathcal{M}^{\mu\nu}$

Decomposition: Form Factors (Contain integrals) $\mathcal{M}^{\mu\nu} \propto A_1(s, t, m_H^2, m_T^2, d) T_1^{\mu\nu} + A_2(s, t, m_H^2, m_T^2, d) T_2^{\mu\nu}$ (Tensor) Basis Choose: $\mathcal{M}^{++} = \mathcal{M}^{--} = -A_1$ $\mathcal{M}^{+-} = \mathcal{M}^{-+} = -A_2$ $T_1^{\mu\nu} = g^{\mu\nu} - \frac{p_2^{\mu}p_1^{\nu}}{n_1 \cdot n_2}$ $p_T^2 = \frac{ut - m_H^4}{c}$ $T_2^{\mu\nu} = g^{\mu\nu} + \frac{m_H^2 p_2^{\mu} p_1^{\nu}}{p_\pi^2 p_1 \cdot p_2} - \frac{2p_1 \cdot p_3 p_2^{\mu} p_3^{\nu}}{p_\pi^2 p_1 \cdot p_2} - \frac{2p_2 \cdot p_3 p_3^{\mu} p_1^{\nu}}{p_\pi^2 p_1 \cdot p_2} + \frac{2p_3^{\mu} p_3^{\nu}}{p_\pi^2}$

Glover, van der Bij 88

Form Factor Decomposition

Construct Projectors:

No Integrals

$$P_{j}^{\mu\nu} = \sum_{i=1}^{2} B_{ji}(s, t, m_{H}^{2}, d) T_{i}^{\mu\nu}$$

Such that:

$$P_{1\mu\nu}\mathcal{M}^{\mu\nu} = A_1$$

$$P_{2\mu\nu}\mathcal{M}^{\mu\nu} = A_2$$

Same Basis as amplitude

Explicitly; separately calculate the contraction of each projector with $\mathcal{M}^{\mu\nu}$

Recall:

$$\mathcal{M}^{++} = \mathcal{M}^{--} = -A_1 \quad \bigstar$$
$$\mathcal{M}^{+-} = \mathcal{M}^{-+} = -A_2$$

- Self-coupling diagrams are 1PR by
- cutting a scalar propagator
 - By angular momentum conservation they contribute only to A_1

Integrals

$$k_i$$
 Loop momenta, p_i L.I. External momenta,
 $N_i = (q_i^2 - a)$ Propagator-1, $q_i = \sum_{i=1}^j b_i k_i + \sum_{i=1}^m c_i p_i$

After Dirac algebra (Traces):

$$A_{j} \supset \int d^{d}k_{1} \int d^{d}k_{2} \frac{f(k_{1} \cdot k_{1}, k_{1} \cdot k_{2}, \dots, k_{2} \cdot p_{3})}{N_{1} \cdots N_{7}}$$
(Max) 7 Propagators in
Diagram

$$S > \text{#Propagators: Irreducible}$$
Numerators
Number of Scalar products:

$$S = \frac{l(l+1)}{2} + lm$$

$$l = 2 \text{ # Loops}$$

$$m = 3 \text{ # L.I External momenta}$$

$$S = 9$$

Integral Reduction

Integral family: Add propagators s.t. all scalar products can be expressed in terms of (inverse) propagators

$$A_j \supset \int \mathrm{d}^d k_1 \int \mathrm{d}^d k_2 \frac{1}{N_1^{\alpha_1} \cdots N_9^{\alpha_9}} \equiv I(\alpha_1, \dots, \alpha_9)$$

Encode all integrals by their propagator powers

Integration-by-parts (IBP) /Lorentz Invariance (LI) Identities Tkachov 81; Chetyrkin, Tkachov 81 Laporta/ S-Bases algorithms to automate application of Laporta 01; Smirnov, Smirnov 06 these identities