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Overview

1. HEFT Results & Motivation 

2. Virtual MEs 

Tool Chain 

Integral Reduction 

Numerical Computation of Master Integrals 

3. Real Radiation & Cross-checks
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In Progress



Gluon Fusion

1. LO (1-loop), Dominated by top                  
(bottom contributes ~1%) 

2. Born Improved NLO H(iggs)EFT                 K≈ 2 

A. Including       in Real radiation -10% 

B. Including                  terms in Virtual MEs ±10% 

3. Born Improved NNLO HEFT +20% 

Including matching coefficients 

Including terms                 in Virtual MEs 

NNLL + NNLO Matching +9%
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Glover, van der Bij 88

Plehn, Spira, Zerwas 96, 98; Dawson, Dittmaier, Spira 98
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Virtual MEs
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NLO

Yukawa only (≤ 4-point) Self-coupling (3-point)
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gg ! H

101 Diagrams 21 Diagrams

Virtual MEs: gg ! HH qq̄ ! HH NNLO

Reducible
Non-planar

Goal: Compute                  @ NLO (2-Loop) including gg ! HH mT



QGRAF

SecDec & Analytic Results

GoSam-2Loop

using QGRAF & FORM

Virtual MEs: Tool Chain
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Nogueira 93

Vermaseren et al. 12

Borowka et al. 15

Cullen et al. 14 + Jahn, SJ, Kerner, Zirke

REDUZE 2

REDUZE 2/LiteRed/FIRE

Mathematica GoSam-2Loop

Partial cross-check: 2 Implementations
Amplitude Generation

Integral 
ReductionLee 13; Smirnov, Smirnov 13

von Manteuffel, Studerus 12

Code 
Generation



Integral Reduction
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Integrals 1-loop 2-loop

Direct 63 9865

+ Symmetries 21 1601

+ IBPs 8 ~260-270 
(currently 327)

S =
l(l + 1)

2
+ lm

Tensor integrals rewritten as inverse propagators

l = 2

m = 3
S = 9

# Loops
# L.I External momenta

Choose 8 Integral families with 9 propagators each

(Mostly) Finite Basis
Panzer 14; von Manteuffel, Panzer, 
Schabinger 15

Complete

Reduction with:  
REDUZE, LiteRed, FIRE

Simplification, fix:
mT = 173 GeV, mH = 125 GeV

Scalar products:



Master Integrals
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3-point, 1 off-shell leg 
HPLs

Up to 4-point, 
4 scales   ,  ,      ,    
SecDec

Spira, Djouadi et al. 93, 95; 
Bonciani, P. Mastrolia 03,04; 
Anastasiou, Beerli et al. 06;

Gehrmann, Guns, Kara 15

3-point, 2 off-shell legs 
Generalized HPLs, 12 Letters

Known Analytically:

Numeric Evaluation:

Thanks: Matthias Kerner

m2
Hm2

Tts



master integrals: examples

mH = 125GeV

mt = 173GeV

SecDec used at amplitude level: 
• Avoid reevaluation of integrals 
• Target accuracy of integrals based 

on contribution to amplitude + 
time/evaluation 

• Continue integration until desired 
amplitude precision reached

Master Integrals: Numerics

Current Status: Cross-checks 
• Single Higgs Part vs Sushi - OK 

• Pole cancellation - OK ( 4+ digits) 

• H & HH vs HEFT - Underway
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Figure 1: HHP1
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Figure 2: HHP2

2

1

3

4

(a) HHP3A 1
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(b) HHP3B

Figure 3: HHP3 (+Permutations)

Thanks: Gudrun Heinrich

Check & Run

✏0 (Real)

Harlander, Liebler, Mantler 13

Next Step: 
Run on cluster 
(Hydra, Garching)

master integrals: examples

mH = 125GeV

mt = 173GeV



Real Radiation
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Real Radiation (HH + j…):
1-j Channels: Diagrams

Tree ⊗ Double 0

1-loop ⊗ Single 54+8+8+8

gg ! HH + g

gq ! HH + q gq̄ ! HH + q̄

qq̄ ! HH + g

GoSam for MEs  + Catani-Seymour Dipole Subtraction

Huge simplification!

Catani, Seymour 96

Checks: 
                etc. reproduced & compared to Sushi
Independence of dipole-cut     parameter
gg ! Hg

↵
Nagy 03

Cullen et al. 14

Complete



Real Radiation + HEFT
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Approx/Full Reals + Virtuals as asymptotic expansion in             (q2e/exp+ Reduze + matad)
Harlander, Seidensticker, Steinhauser 97,99; Steinhauser 00

Thanks: Tom Zirke

μR=μF=mHH/2 
MSTW2008 NLO PDFs 
sqrt(s) = 14 TeV

PDF4LHC15_nlo_30_pdfas 

Uncertainty: 

PDF with (without)      variation

µR = µF =
mHH

2

µR = µF 2
hµ0

2
, 2µ0

i

mH = 125 GeV
mT = 172.5 GeV

↵s

1/m2
T

gg ! HH total cross section [fb]p
s [TeV] NLO HEFT + Full Reals Maltoni, Vryonidou, Zaro

7 5.939 +17%
�16% ± 4.6%(±4.1%) 5.82 +18%

�16%(±4.0%)

8 8.590 +17%
�15% ± 4.2%(±3.8%) 8.63 +17%

�15%(±3.6%)

13 28.83 +15%
�13% ± 3.3%(±2.8%) 28.4 +16%

�13%(±2.7%)

14 34.15 +15%
�13% ± 3.2%(±2.6%) 34.0 +15%

�13%(±2.6%)

1



Conclusion

HH Production 
• Key measurement for probing the self coupling (HL-LHC era) 
• HEFT implies that the NLO K factor for gluon fusion is large 

Unknown top mass effects give large uncertainty 
Full NLO corrections important 

Ongoing/Future 
• Complete checks of virtual amplitude 
• Run on cluster, obtain enough phase-space points for 

accurate total cross-section prediction 

Thank you for listening!
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Backup



• full real-emission matrix elements and dipoles 
• virtual corrections as asymptotic expansion in 1/mt2 

with q2e/exp [Harlander, Seidensticker, Seidensticker] + 
Reduze [von Manteuffel, Studerus] + matad [Steinhauser] 

• not directly comparable with [Grigo, Hoff, Steinhauser], 
(real radiation treated differently, expansion parameter (mH/mt)2)

Approximate top-mass effects at NLO
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Figure 2. Examples of diagrams contributing to the real radiation part at NLO. The dia-

grams in the second row do not lead to infrared singularities.

2.2.4 Real radiation

For the real radiation, we use the Catani-Seymour dipole formalism [54], i.e. we write

the cross section as

�NLO(p) =

Z

d�3

2

4

�

d�R(p)
�

✏=0
�
 

X

dipoles

d�LO(p)⌦ dVdipole

!

✏=0

3

5

+

Z

d�2

⇥

d�V (p) + d�LO(p)⌦ I
⇤

✏=0

+

Z 1

0

dx

Z

d�2

⇥

d�LO(xp)⌦ (P+K) (x)
⇤

✏=0
. (2.42)

There are four partonic channels for the real radiation contribution to the cross section:

�r(gg ! hh+ g), �r(gq ! hh+ q), �r(gq̄ ! hh+ q̄), �r(qq̄ ! hh+ g) . (2.43)

The qq̄ channel is infrared finite.

In the following we will use a phase space restriction parameter ↵ to restrict the dipole

subtraction to a limited region, as suggested in Ref. [55]. The general formula for the

infrared insertion operator is given by

I({p};↵; ✏) = �↵s

2⇡

1

�(1� ✏)

X

I

1

T2
I

VI(↵, ✏)
X

J 6=I

TI ·TJ

✓

4⇡µ2

2pI · pJ

◆✏

, (2.44)
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✅

✅

Thus we are left with only spin correlation, which we evaluate by formally projecting

onto |µ, ⌫i = |µi ⌦ |⌫i so that

Dai,b =
1

2pa · pi
1

xi,ab
heh1,eh2; eai, b||µ0, ⌫ 0ihµ0|Vai,b |µih⌫ 0||⌫ihµ, ⌫||eh1,eh2; eai, bi, (2.63)

where hµ||⌫i = P

pol.(✏
µ)⇤✏⌫ and

hµ, ⌫||eh1,eh2; eai, bi = Mµ⌫(epai, pb, eph1, eph2). (2.64)

Making use of the decomposition (2.1), the dipoles can be expressed in terms of the

form factors F1,2 evaluated in D = 4.2 For the numerical evaluation we implement the

analytic results for the LO form factors from Ref. [5].

The relevant splitting functions are given by

hµ|Vg
a

g
i

,b(xi,ab)|⌫i = 16⇡µ2✏↵s CA



�gµ⌫
✓

xi,ab

1� xi,ab
+ xi,ab(1� xi,ab)

◆

+ (1� ✏)
1� xi,ab

xi,ab

pa · pb
pi · pa pi · pb

✓

pµi �
pipa
pbpa

pµb

◆✓

p⌫i �
pipa
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p⌫b

◆�

(2.65)

for the gg ! ghh channel, and

hµ|Vq
a

q
i

,b(xi,ab)|⌫i = 8⇡µ2✏↵s CF

h

�gµ⌫xi,ab

+
1� xi,ab
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pµb
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p⌫b

◆�

(2.66)

for qg ! qhh (q̄g ! q̄hh).

2.3 Heavy-top expansion

For comparison we perform the calculation additionally in the limit of a large top-quark

mass using the method of asymptotic expansion [56, 57]. Thus we write the partonic

di↵erential cross section as

d�exp,N =
N
X

k=0

d�(k)

✓

⇤

mt

◆2k

, (2.67)

where ⇤ 2 �p
s,
p
t,
p
u,mh

 

stands for any combination of external momenta, and

determine the first few terms (up to N = 3) of this asymptotic series. Choosing N = 0

2 Note that for gg ! hh the spin correlation is indeed non-trivial, i.e. the dipoles cannot be
written as LO cross section times splitting function. In particular, there is a non-vanishing mixed
term proportional to ReF ⇤

1 F2.

– 19 –

reproduces to the usual e↵ective theory approach, without the need to calculate Wilson

coe�cients separately, however.

To generate the diagrams we again use qgraf [37]. The generation and expansion of

the amplitude in small external momenta is then performed using q2e/exp [58, 59]

and leads to two-loop vacuum integrals inserted into tree-level diagrams as well as one-

loop vacuum integrals inserted into massless one-loop triangles. Whereas the vacuum

integrals are evaluated with Matad [60], the massless integrals can be expressed in

terms of a single one-loop bubble, which we achieve with the help of Reduze [40].

Again, the algebraic processing of the amplitude is done with Form [38, 39].

We can now obtain di↵erent approximations by combining the exact and expanded

matrix elements in various ways:

(1) Series expansion only for virtual corrections, rescaled with exact born:

d�V + d�LO(✏)⌦ I ⇡ d�V
exp,N

d�LO(✏)

d�LO
exp,N(✏)

+ d�LO(✏)⌦ I

=
�

d�V
exp,N + d�LO

exp,N(✏)⌦ I
� d�LO(✏)

d�LO
exp,N(✏)

=
�

d�V
exp,N + d�LO

exp,N(✏)⌦ I
� d�LO(✏ = 0)

d�LO
exp,N(✏ = 0)

+O (✏) (2.68)

The first identity is valid because the colour structure of the exact and the expanded

LO cross section are identical, and the second because the sum in the bracket is

finite. Thus one needs to know only the ✏ dependence of the expanded LO cross

section in this approximation.

There is some ambiguity when to do the rescaling (before/after phase-space inte-

gration, convolution with the PDFs etc.). We opt to do it on a fully di↵erential

level, i.e. the rescaling is done for each phase-space point individually.

(2) Virtual corrections as above, expand and rescale real radiation as well:

d�R �
X

dipoles

d�LO ⌦ dVdipole ⇡ d�R
exp,N · d�LO

d�LO
exp,N

�
X

dipoles

d�LO
exp,N ⌦ dVdipole · d�LO

d�LO
exp,N

(2.69)

It seems arbitrary which momenta to use for the born matrix elements entering the

rescaling factor applied to d�R
exp,N on the di↵erential level. One possible choice is a

weighted average between the rescaling factors used for the dipoles.3 This ensures

3 As weight we use 1
zi3

= p1·p2

pi·p3
, i = 1, 2.

– 20 –
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Thus we are left with only spin correlation, which we evaluate by formally projecting
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For comparison we perform the calculation additionally in the limit of a large top-quark
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determine the first few terms (up to N = 3) of this asymptotic series. Choosing N = 0
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term proportional to ReF ⇤

1 F2.

– 19 –

Slide: 
Tom 
Zirke



• „approx“ ≘ rescaled expansion with N=0  
• Known negative mass effects from real radiation

Mass effects in MHH distribution (I)
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Slide: Tom Zirke



• Slight tendency that -10% effect persists, but: 
spoilt cancellations? threshold effects?

Mass effects in MHH distribution (II)

15

mt=173 GeV  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Slide: Tom Zirke



Mass effects in pT distribution (I)
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Mass effects in pT distribution (II)
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mt=173 GeV  
μR=μF=mHH/2 
MSTW2008 NLO PDFs 
sqrt(s) = 14 TeV
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B. Grigo, Hoff, Steinhauser 15

±10%

A.

Born Improved NLO QCD HEFT

Gluon Fusion (NLO HEFT)

18

K ⇡ 2

�10%

d�R(mT ! 1)

d�R(mT )

d�V (mT )

Maltoni et al.14

HEFT Valid for: 
p
s ⌧ 2mT 2mH <

p
sHH Production for:

d�V
NLO(mT ) ⇡ d�̄V

NLO(mT ) ⌘
d�V

NLO(mT ! 1)

d�V
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G.H.S Top Mass Expansion
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Grigo, Hoff, Steinhauser 15
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HEFT NNLO + NNLL

20

 de Florian, Mazzitelli 15
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Figure 1: The Higgs pair invariant mass distribution for Ecm = 14 TeV and the central scale µ0 = Q, for
the fixed order (left) and resummed (right) predictions. In the left (right) we show the LO (LL), NLO
(NLL) and NNLO (NNLL) curves, with blue dotted, red dashed and black solid lines respectively.

300 400 500 600 700
0.00

0.05

0.10

0.15

0.20

Q H GeVL

ds
êdQ

Hfb
êGe

V
L

LO

NLO

NNLO

14 TeV , m0=Qê 2

300 400 500 600 700
0.00

0.05

0.10

0.15

0.20

Q H GeVL

ds
êdQ

Hfb
êGe

V
L

LL

NLL

NNLL

14 TeV , m0=Qê 2

Figure 2: The Higgs pair invariant mass distribution for Ecm = 14 TeV and the central scale µ0 = Q/2,
for the fixed order (left) and resummed (right) predictions. The color coding is the same of Figure 1.

3 NNLL phenomenology

We present in this section the phenomenological results. For the computation we take the Higgs
mass to be MH = 125 GeV. All the results are normalized by the exact LO top mass dependence,
with Mt = 173.21 GeV. For the parton luminosities and strong coupling we use the MSTW2008
sets, consistently at each perturbative order (i.e. LO PDFs and one-loop ↵S evolution for LO
and LL cross sections, etc.). The scale uncertainty was evaluated by varying independently the
renormalization and factorization scales in the range µ0/2  µR, µF  2µ0 with the constraint
1/2  µR/µF < 2, where µ0 is the central scale. The analysis was performed for two choices of
the central scale: µ0 = Q and µ0 = Q/2, being Q the invariant mass of the Higgs pair system.

The contributions from all the relevant partonic channels are always included in our numerical
results. As described in the previous section, the threshold resummation only applies for the gg
channel. With the corresponding matching we also account for the other partonic subprocesses at
the corresponding fixed order accuracy.

We start by showing the Higgs pair invariant mass distribution for a collider center of mass
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Figure 3: The K-factors for the fixed order and resummed cross sections as a function of the Higgs pair
invariant mass, for Ecm = 14 TeV. The left (right) panel shows the results for µ0 = Q (µ0 = Q/2). The
color coding is the same of Figure 1.

energy Ecm = 14 TeV. In Figure 1 we present the results corresponding to the central scale
µ0 = Q, while in Figure 2 the ones corresponding to µ0 = Q/2 are shown. For both figures, in the
left plot we present the fixed order prediction (at LO, NLO and NNLO) while in the right one we
show the resummed cross section (at LL, NLL and NNLL). ‡

In the first place we can observe that, with the exception of the µ0 = Q/2 resummed distribu-
tions, there is no overlap between the LO (LL) and NLO (NLL) bands, and it is only at second
order that a sensible superposition of the bands occurs. We can also see from the plots that at
every order the inclusion of the resummed contributions results in an increase of the cross section.
Also, we can observe that the size of the uncertainty band at NNLL is always smaller than the
corresponding NNLO one. This e↵ect is more clear with the choice µ0 = Q, for which also a better
overlap between the NNLL and NLL bands is observed, with respect to the NNLO and NLO ones.
The fixed order and resummed distributions have less di↵erences for µ0 = Q/2, as was already
observed for single Higgs production, where the choice µ0 = MH/2 partially mimics some of the
threshold resummation e↵ects. Regarding the shape of the distributions, we observe very small
di↵erences after the resummation is performed. This is due to the fact that the relative size of
the resummed contributions has a rather small dependence on the Higgs pair invariant mass.

In Figure 3 we present the K-factors, defined as the ratio between a given prediction and the
LO one. For the denominator we fix µR = µF = µ0. We observe, in more detail, the same features
described above at the level of the cross section. In particular, it is visible that the resummed
series has a better convergence than the fixed order one, exhibiting a larger overlap between the

‡For simplicity, we always label our resummed predictions as LL, NLL and NNLL. As explained before, these
results include the matching to the fixed order cross section, so they should be interpreted as LL+LO, NLL+NLO
and NNLL+NNLO respectively.
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Figure 4: The ratio between the NNLL and the NNLO predictions as a function of the Higgs pair
invariant mass, for the scales µ = Q (left) and µ = Q/2 (right). Results are shown for center of mass
energies of 8 TeV (orange solid), 14 TeV (magenta dashed), 33 TeV (purple dot-dashed) and 100 TeV
(black dotted).

µ0 = Q NNLO (fb) scale unc. (%) NNLL (fb) scale unc. (%) PDF unc. (%) PDF+↵S unc. (%)
8 TeV 9.92 +9.3� 10 10.8 +5.4� 5.9 +5.6� 6.0 +9.3� 9.2

13 TeV 34.3 +8.3� 8.9 36.8 +5.1� 6.0 +4.0� 4.3 +7.7� 7.5
14 TeV 40.9 +8.2� 8.8 43.7 +5.1� 6.0 +3.8� 4.0 +7.5� 7.3
33 TeV 247 +7.1� 7.4 259 +5.0� 6.1 +2.2� 2.8 +6.1� 6.1
100 TeV 1660 +6.8� 7.1 1723 +5.2� 6.1 +2.1� 3.0 +5.7� 5.8

µ0 = Q/2 NNLO (fb) scale unc. (%) NNLL (fb) scale unc. (%) PDF unc. (%) PDF+↵S unc. (%)
8 TeV 10.8 +5.7� 8.5 11.0 +4.0� 5.6 +5.8� 6.1 +9.6� 9.3

13 TeV 37.2 +5.5� 7.6 37.4 +4.2� 5.8 +4.1� 4.3 +7.8� 7.6
14 TeV 44.2 +5.5� 7.6 44.5 +4.2� 5.9 +3.9� 4.1 +7.6� 7.4
33 TeV 264 +5.3� 6.6 265 +4.6� 6.1 +2.4� 2.7 +6.3� 6.1
100 TeV 1760 +5.3� 6.7 1762 +4.9� 6.4 +2.2� 3.1 +6.2� 7.0

Table 1: The total cross section and theoretical uncertainties for di↵erent center of mass energies, at
NNLO and NNLL, for µ0 = Q and µ0 = Q/2. PDF and PDF+↵S uncertainties correspond to the
resummed predictions, and are estimated using the sets of MSTW2008 at 90% confidence level.

first and second order bands.

In Figure 4 we show the ratio between the NNLL and the NNLO predictions, again as a
function of the Higgs pair invariant mass, for di↵erent collider energies. The ratio shows an
almost linear dependence on Q, increasing for higher invariant masses. Actually, this is expected
because resummation contributions are enhanced when the process becomes closer to the partonic
threshold. The same feature is reflected by the fact that the resummation contributions are
relatively smaller for larger collider energies. We can also observe, as it was already clear from
Figures 1 and 2, that the ratio between NNLL and NNLO is significantly smaller for the scale
choice µR = µF = µ = Q/2. At the total cross section level, for example, we find that the increase
in the NNLL result with respect to the NNLO prediction is of 6.8% for Ecm = 14 TeV and µ = Q,
while it drops down to 0.65% for µ = Q/2.

We focus now on the theoretical uncertainty arising from the missing higher order contributions,
which is estimated by the scale variation indicated above. In Table 1 we present the total cross
section predictions at NNLO and NNLL, together with the scale uncertainty. We can observe
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Production Channels

Gluon Fusion
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Production Channels

Gluon Fusion1
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Diagrams
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Form Factor Decomposition

Expose tensor structure: 

Decompose: 
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M = ✏1µ✏
2
⌫Mµ⌫

4X
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pi = 0g(p1)g(p2) ! H(�p3)H(�p4)
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⌫
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⌫
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Form Factor Decomposition

Decomposition:
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Mµ⌫ / A1(s, t,m
2
H ,m2

T , d)T
µ⌫
1 +A2(s, t,m

2
H ,m2

T , d)T
µ⌫
2

Tµ⌫
1 = gµ⌫ � pµ2p
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Glover, van der Bij 88

Form Factors (Contain integrals)

Choose: M++ = M�� = �A1

M+� = M�+ = �A2

(Tensor) Basis

p2T =
ut�m4

H

s

Expose tensor structure: M = ✏1µ✏
2
⌫Mµ⌫



Form Factor Decomposition
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Construct Projectors:

M++ = M�� = �A1

M+� = M�+ = �A2

Recall: • Self-coupling diagrams are 1PR by 
cutting a scalar propagator 

• By angular momentum conservation 
they contribute only to      A1

Such that:
P1µ⌫Mµ⌫ = A1

P2µ⌫Mµ⌫ = A2

Explicitly; separately calculate the 
contraction of each projector with Mµ⌫

Same Basis as amplitude

Pµ⌫
j =

2X

i=1

Bji(s, t,m
2
H , d)Tµ⌫

i

No Integrals



Integrals
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After Dirac algebra (Traces):

ki pi

Ni = (q2i � a) qi =
jX

i=1

biki +
mX

i=1

cipi

Loop momenta, L.I. External momenta,

Propagator-1,

Aj �
Z

ddk1

Z
ddk2

f(k1 · k1, k1 · k2, . . . , k2 · p3)
N1 · · ·N7

S =
l(l + 1)

2
+ lm

Number of Scalar products:

l = 2

m = 3
S = 9

# Loops
# L.I External momenta

(Max) 7 Propagators in 
Diagram

     #Propagators: Irreducible 
Numerators

S >



Integral Reduction
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Integral family: Add propagators s.t. all scalar products 
can be expressed in terms of (inverse) propagators

Integration-by-parts (IBP) /Lorentz Invariance (LI) Identities 

Laporta/ S-Bases algorithms to automate application of 

these identities

Aj �
Z

ddk1

Z
ddk2

1

N↵1
1 · · ·N↵9

9

⌘ I(↵1, . . . ,↵9)

Encode all integrals by their propagator powers

Symmetries: I(↵1, . . . ,↵9) = I(�(↵1), . . . ,�(↵9)) For some ↵i > 0

Gehrmann, Remiddi 99Tkachov 81; Chetyrkin, Tkachov 81

Laporta 01; Smirnov, Smirnov 06 


