Status Update: HH Production @ NLO

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Stephen Jones

Work With: Borowka, Greiner, Heinrich, Kerner, Schlenk, Schubert, Zirke

1. HEFT Results & Motivation

2. Virtual MEs

In Progress

- Tool Chain
- Integral Reduction
- Numerical Computation of Master Integrals
- 3. Real Radiation & Cross-checks

Gluon Fusion

1. LO (1-loop), Dominated by top (bottom contributes $~1\%$) Glover, van der Bij 88

- 2. Born Improved NLO H(iggs)EFT $m_T \rightarrow \infty$ K \approx 2 Plehn, Spira, Zerwas 96, 98; Dawson, Dittmaier, Spira 98
- A. Including m_T in Real radiation **-10%** Maltoni, Vryonidou, Zaro 14
-
- B. Including $\mathcal{O}(1/m_T^{12})$ terms in Virtual MEs **±10%** Grigo, Hoff, Melnikov, Steinhauser 13; Grigo, Hoff 14; Grigo, Hoff, Steinhauser 15
- 3. Born Improved NNLO HEFT +20% Including matching coefficients Including terms $\mathcal{O}(1/m_T^{12})$ in Virtual MEs NNLL + NNLO Matching +9% De Florian, Mazzitelli 13 Grigo, Melnikov, Steinhauser 14 de Florian, Mazzitelli 15 Grigo, Hoff, Steinhauser 15

Virtual MEs

Virtual MEs: $gg \to HH$ $q\bar{q} \to HH$ \leftarrow NNLO **Goal:** Compute $gg \to HH$ @ NLO (2-Loop) including m_T

Virtual MEs: Tool Chain

Partial cross-check: 2 Implementations

Integral Reduction

Tensor integrals rewritten as inverse propagators

Scalar products:

 $S =$ $l(l+1)$ $\frac{1}{2} + lm$

 \mathbf{r}

 $l = 2$ # Loops $m=3$ *^S* = 9 # Loops # L.I External momenta

$$
S = 9
$$

Choose 8 Integral families with 9 propagators each

Master Integrals

Known Analytically:

Numeric Evaluation:

Up to 4-point, 4 scales s , t , m_T^2 , m_H^2 SecDec

maring integrals: A Master Integrals: Numerics master integrals: examples

SecDec used at amplitude level:

- Avoid reevaluation of integrals
- *m^H* = 125 *GeV* • Target accuracy of integrals based on contribution to amplitude + time/evaluation
- Continue integration until desired amplitude precision reached

Current Status: Cross-checks

- Single Higgs Part vs Sushi OK Harlander, Liebler, Mantler 13
- Pole cancellation OK (4+ digits)
- H & HH vs HEFT Underway

1 Thanks: Gudrun Heinrich

Figure 3: HHP3 (+Permutations)

Next Step:

Run on cluster

(Hydra, Garching)

Check & Run

Real Radiation

GoSam for MEs + Catani-Seymour Dipole Subtraction Catani, Seymour 96 Cullen et al. 14

Checks:

 $gg \to Hg$ etc. reproduced & compared to Sushi Independence of dipole-cut α parameter Nagy 03

Real Radiation + HEFT

Approx/Full Reals + Virtuals as asymptotic expansion in $1/m_T^2$ (<code>q2e/exp+</code> Reduze + <code>matad</code>) Harlander, Seidensticker, Steinhauser 97,99; Steinhauser 00

Thanks: Tom Zirke

Conclusion

HH Production

- Key measurement for probing the self coupling (HL-LHC era)
- HEFT implies that the NLO K factor for gluon fusion is large Unknown top mass effects give large uncertainty Full NLO corrections important

Ongoing/Future

- Complete checks of virtual amplitude
- Run on cluster, obtain enough phase-space points for accurate total cross-section prediction

Thank you for listening!

Backup

Slide: Approximate top-mass effects at NLO the cross section as $\sigma^{NLO}(p) = \int d\phi_3$ $\sqrt{2}$ $\left(d\sigma^R(p) \right)$ $_{\epsilon=0}$ – $\sqrt{ }$ dipoles $d\sigma^{LO}(p)\otimes\ dV_{\rm dipole}$ $\epsilon = 0$ $\overline{1}$ $\mathbf{1}$ $+$ z $d\phi_2 \left[d\sigma^V(p) + d\sigma^{LO}(p) \otimes \mathbf{I} \right]$ $\epsilon = 0$ $+$ \int_0^1 0 $dx \, \int \, d\phi_2 \, \big[d\sigma^{LO}(xp) \otimes (\mathbf{P} + \mathbf{K}) \, (x) \big]_{\epsilon=0} \, \bigotimes \,$ There are four partonic channels for the real radiation contribution to the cross section: $d\sigma^V + d\sigma^{LO}(\epsilon) \otimes \mathbf{I} \approx d\sigma_{\exp,N}^V \frac{d\sigma}{d\sigma^{LO}(\epsilon)} + d\sigma^{LO}(\epsilon) \otimes \mathbf{I}$ $d\sigma_{\exp,N} = \sum d\sigma^{(k)}$ $\mathcal{L} \times V$ channel is infrared finite. $I = (d\sigma_{\exp,N}^{V} + d\sigma_{\exp,N}^{LO}(\epsilon) \otimes 1) \frac{1}{d\sigma_{\exp,N}^{LO}(\epsilon)}$ subtraction to a limit $d\sigma^{LO}(\epsilon=0)$ and $\Lambda \in \{\sqrt{s}, \sqrt{t}, \sqrt{u}, \sqrt{u}\}$ $i\in\left(a\sigma_{{\rm exp},N}+a\sigma_{{\rm exp},N}(\epsilon)\otimes{\bf 1}\right)$ ✅ h *xi,ab pⁱ · p^a pⁱ · p^b* 2*p^a · p^b* $\ell = 0$ \sum_{dipoles} ℓ $\int d\phi_2 \left[d\sigma^V(p) + d\sigma^{LO}(p) \otimes \mathbf{I} \right]$ For comparison we perform the calculation addition addition addition additionally in the limit of a large top- $\left[d\sigma^{2\infty}(xp)\otimes (\mathbf{P}+\mathbf{K})(x)\right]_{\epsilon=0}$ $\mathbf{\nabla}$ di↵erential cross section as *N* $k=0$ $d\sigma^{(k)}$ \bigwedge *m^t* $\sum_{k=1}^{N} \binom{k}{k} \left(\frac{\Lambda}{k} \right)^{2k}$ *,* (2.67) stands for any combination of external momenta, and $d\sigma^{LO}(\epsilon=0)$ of $\Delta \in \{\sqrt{s}, \sqrt{t}, \sqrt{u}, m_h\}$ $\omega_{\exp,N}$ ($\epsilon - \upsilon$) Slide: Approximate top-mass effects at NLO $\mathsf{T}\mathsf{om}$ integrals integrals integrals integrals integrals into tree-level diagrams as well as we \blacksquare **integrals are evaluated with Matad** (p) , the mass integrals integrals integrals integrals integrals in the mass integrals of $p \gg a \nu_{\rm dipo}$ terms of a single one-loop bubble, which we achieve with the help of Reduze and Reduze and Reduze $\frac{1}{4}$. \mathcal{Y} approximations by combining the exact approximations by combining the exact and expanding the expanded \mathcal{Y} matrix elements in various ways: $\overline{}$ series expansion only for virtual corrections, respectively. Respectively, respectively, respectively. $d\sigma^{LO}(\epsilon)$ $\frac{d\sigma}{d\sigma^{LO}_{\exp,N}(\epsilon)} + d\sigma^{LO}(\epsilon) \otimes \mathbf{I}$ $=\big(d\sigma^V_{\mathrm{exp},N}+d\sigma^{LO}_{\mathrm{exp},N}(\epsilon)\otimes\mathbf{I}\big)$ $\frac{d\sigma^{LO}(\epsilon)}{d\epsilon}$ $d\sigma^{LO}_{\mathrm{exp},N}(\epsilon)$ $=\big(d\sigma^V_{\mathrm{exp},N}+d\sigma^{LO}_{\mathrm{exp},N}(\epsilon)\otimes\mathbf{I}\big)$ $\frac{d\sigma^{LO}(\epsilon=0)}{d\epsilon}$ $\frac{d\sigma}{d\sigma_{\exp,N}^{LO}(\epsilon=0)} + \mathcal{O}(\epsilon)$ ^h*µ|*V*^qaqi,b*(*xi,ab*)*|*⌫ⁱ = 8⇡*µ*²✏ for *qg* ! *qhh* (¯*qg* ! *qhh* ¯). $\overline{}$ $\epsilon = 0$ and the calculation addition addition additionally in the limit of a large top-quark in the limit of a large to mass using the method of asymptotic expansion \mathcal{S} . Thus we write the partonic the partonic the partonic theoretic the partonic term of a symptotic expansion \mathcal{S} . *^d*exp*,N* ⁼ ^X $\Lambda \in \{\sqrt{s}, \sqrt{t}, \sqrt{u}, m_h\}$ $\left.\right\}$ determine the first few terms (up to *N* = 3) of this asymptotic series. Choosing *N* = 0 Slide: Tom Zirke

- full real-emission matrix elements and dipoles ^I(*{p}*; ↵;✏) = ↵*^s* ion ma $\overline{1}$ $\overline{}$ r_{IX} 1 *V^I* (↵*,*✏) $\overline{}$ *J*6=*I* $|ts a|$ ✓ 4⇡*µ*² 2*p^I · p^J* triv alamante and dinales <u>trix eiements a</u>r F full roal amission matrix alamants and LOT LOUI CITTION CRITING BROWLING CITY SUPPORT IN THE SUM IN THE SUM IN THE BRACKET IS SUPPORT IN THE BRACKET ² Note that for *gg* ! *hh* the spin correlation is indeed non-trivial, i.e. the dipoles cannot be written as LO cross section times splitting function. In particular, the in particular, there is a non-vanishing mixed m
- virtual corrections as asymptotic expansion in $1/m_t$ ² with q2e/exp [Harlander, Seidensticker, Seidensticker] + Reduze [von Manteuffel, Studerus] + matad [Steinhauser] , colabilettonor, colabilettonor j \mathbf{S} in this approximation. There is some and the research of the research phase-space interterm proportional to Re *F*⇤ ¹ *F*2.
- not directly comparable with [Grigo, Hoff, Steinhauser], (real radiation treated differently, expansion parameter $(m_H/m_t)^2$) level, i.e. the rescaling is done for each phase-space point individually. (2) virtual contains as above, expanding $\frac{1}{2}$ 13

Mass effects in M_{HH} distribution (I)

- n_{max} , approx" ϵ rescaled expansion with N=0
- Known negative mass effects from real radiation 14

Mass effects in M_{HH} distribution (II)

• Slight tendency that -10% effect persists, but: spoilt cancellations? threshold effects?

Mass effects in p_T distribution (I)

Mass effects in p_T distribution (II)

Gluon Fusion (NLO HEFT)

G.H.S Top Mass Expansion

Grigo, Hoff, Steinhauser 15

 700

700

LO VS LO HEFT

Slawinska, van den Wollenberg, Eijk, Bentvelsen 14

Self-Coupling Sensitivity

Production Channels

 $\sigma(pp \to HH + X)$ @ 13TeV

(VBF)

… Baglio, Djouadi et al. 12

Production Channels

Diagrams

Form Factor Decomposition

 $\overline{\mathcal{A}}$

$$
g(p_1)g(p_2) \to H(-p_3)H(-p_4) \quad \sum_{i=1}^{4} p_i = 0
$$

 CDR (Dim $= d$)

Expose tensor structure: $\mathcal{M} = \epsilon_{\mu}^{1} \epsilon_{\nu}^{2} \mathcal{M}^{\mu \nu}$

Decompose: $M^{\mu\nu} = a_{00}g^{\mu\nu} + a_{11}p_{1}^{\mu}p_{1}^{\nu} + a_{12}p_{1}^{\mu}p_{2}^{\nu} + a_{13}p_{1}^{\mu}p_{3}^{\nu}$ $+ a_{21}p_2^{\mu}p_1^{\nu} + a_{22}p_2^{\mu}p_2^{\nu} + a_{23}p_2^{\mu}p_3^{\nu}$ $+ a_{31}p_3^{\mu}p_1^{\nu} + a_{32}p_3^{\mu}p_2^{\nu} + a_{33}p_3^{\mu}p_3^{\nu}$ a_{ij} functions of **Mandelstams +** *d* p_i linearly indep. *g*(*p*₁) : $\epsilon_\mu^1 p_1^\mu = 0$ | $g(p_2) : \epsilon_\nu^2 p_2^\nu = 0$

Ward/Gauge: $p_{1\mu}M^{\mu\nu} = 0$, $p_{2\nu}M^{\mu\nu} = 0$ Gives further identities

Form Factor Decomposition

Expose tensor structure: $\mathcal{M} = \epsilon_{\mu}^{1} \epsilon_{\nu}^{2} \mathcal{M}^{\mu \nu}$

Decomposition: $\mathcal{M}^{\mu\nu} \propto A_1(s,t,m_H^2,m_T^2,d)T_1^{\mu\nu}+A_2(s,t,m_H^2,m_T^2,d)T_2^{\mu\nu}$ $T^{\mu\nu}_{1}$ $q_1^{\mu\nu} = g^{\mu\nu} - \frac{p_2^{\mu}p_1^{\nu}}{p_1 \cdot p_2^{\nu}}$ *p*¹ *· p*² $T_2^{\mu\nu} = g^{\mu\nu} +$ $m_H^2 p_2^\mu p_1^\nu$ $p_T^2 p_1 \cdot p_2$ $-\frac{2p_1 \cdot p_3 p_2^{\mu} p_3^{\nu}}{p_1^2 p_1 \cdot p_2}$ $p_T^2 p_1 \cdot p_2$ $-\frac{2p_2 \cdot p_3 p_3^{\mu} p_1^{\nu}}{p_2^2 p_1 \cdot p_2}$ $p_T^2 p_1 \cdot p_2$ $+$ $2p_{3}^{\mu}p_{3}^{\nu}$ p_T^2 **Form Factors (Contain integrals)** Choose: $\mathcal{M}^{++} = \mathcal{M}^{--} = -A_1$ $M^{+-} = M^{-+} = -A_2$ **(Tensor) Basis** $p_T^2 =$ $ut-m_H^4$ *s*

Glover, van der Bij 88

Form Factor Decomposition

Construct Projectors:

$$
P_j^{\mu\nu} = \sum_{i=1}^2 B_{ji}(s, t, m_H^2, d) T_i^{\mu\nu}
$$

Such that:

$$
P_{1\mu\nu}\mathcal{M}^{\mu\nu} = A_1
$$

$$
P_{2\mu\nu} \mathcal{M}^{\mu\nu} = A_2
$$

Same Basis as amplitude

Explicitly; separately calculate the contraction of each projector with $\mathcal{M}^{\mu\nu}$

Recall:

$$
\mathcal{M}^{++} = \mathcal{M}^{--} = -A_1
$$

$$
\mathcal{M}^{+-} = \mathcal{M}^{-+} = -A_2
$$

- Self-coupling diagrams are 1PR by
- **-** cutting a scalar propagator
	- •By angular momentum conservation they contribute only to A_1

Integrals

$$
k_i
$$
 Loop momenta, p_i L.I. External momenta,
\n $N_i = (q_i^2 - a)$ Propagator⁻¹, $q_i = \sum_{i=1}^{j} b_i k_i + \sum_{i=1}^{m} c_i p_i$

After Dirac algebra (Traces):
\n
$$
A_j \supset \int d^d k_1 \int d^d k_2 \frac{f(k_1 \cdot k_1, k_1 \cdot k_2, ..., k_2 \cdot p_3)}{N_1 \cdots N_7}
$$
 (Max) 7 Propagators in
\n*S* > # Propagators: Irreducible
\nNumber of Scalar products:
\n $S = \frac{l(l+1)}{2} + lm$ $\frac{l=2 \text{ # Loops}}{m=3 \text{ # L.I External momenta}}$

Integral Reduction

Integral family: Add propagators s.t. all scalar products can be expressed in terms of (inverse) propagators

$$
A_j \supset \int \mathrm{d}^d k_1 \int \mathrm{d}^d k_2 \frac{1}{N_1^{\alpha_1} \cdots N_9^{\alpha_9}} \equiv I(\alpha_1, \ldots, \alpha_9)
$$

Encode all integrals by their propagator powers

Symmetries: $I(\alpha_1, \ldots, \alpha_9) = I(\sigma(\alpha_1), \ldots, \sigma(\alpha_9))$ **For some** $\alpha_i > 0$

Integration-by-parts (IBP) /Lorentz Invariance (LI) Identities

Tkachov 81; Chetyrkin, Tkachov 81

Gehrmann, Remiddi 99 Laporta/ S-Bases algorithms to automate application of these identities Tkachov 81; Chetyrkin, Tkachov 81 Laporta 01; Smirnov, Smirnov 06