H→**Exotics**

S. Gori, J. Shelton, A. Mohammadi, S. Bressler On behalf of many contributors

Y4 - Goals

Goals of the working group

S. Gori @ 10th LHCHXS WS

Searches for new decay modes of the 125 GeV Higgs boson

Four main broad topics:

- **1.** Flavor changing decays. Example: $h \rightarrow \tau \mu$ Rare decays to mesons. Example: $h \rightarrow J/\Psi + \gamma$
- 2. Prompt decays without MET. Example: $h \to aa \to (b\bar{b})(\mu\bar{\mu})$
- **3**. Prompt decays with MET. Example: $h \rightarrow \chi \chi \rightarrow 2\gamma + \text{MET}$
- **4**. Decays with displaced vertices. Example: $h \rightarrow g_B g_B \rightarrow 4f$

Constructive relations between theorists and experimentalists Working mode:

Y4 - Summary (Y4 yellow paper report)

1 Introduction and motivation

2	Recommendations	for	experimental	searches	for	$h \rightarrow$	exotics
----------	-----------------	-----	--------------	----------	-----	-----------------	---------

3	Par	tonic distributions for the prompt decay topology $h \rightarrow XX \rightarrow 4Y$	
	3.1	Introduction	Verena Martines, Zhen Liu
	3.2	Benchmark model and processes in consideration	De ser Cominel Arresdens
	3.3	Numerical results and recommendation	Roger Caminal Armadans
4	Pro	spects for prompt decays with MET: $h \rightarrow 2\gamma + E_T$ test case	
	4.1	MC Samples	
	4.2	Event Selection	Tovoko Orimoto.
	4.3	Background Estimation	Pafaal Taivaira da Lima
	4.4	Efficiencies	Kalael leixella de Lillia
		4.4.1 Gluon Fusion	
		4.4.2 Associated Production: ZH	
	4.5	Figures	
		4.5.1 Gluon Fusion	
		4.5.2 Associated Production: ZH	
5	Lon	g-lived particles from Higgs decays	
	5.1	Overview and Motivation	David Curtin Matt Stragglan
	5.2	Displaced Vertices	David Curtili, Iviati Strassier
		5.2.1 A Simplified Model for the hXX-HF Scenario	in consultation with
		5.2.2 Neutral Naturalness	Eric Kuflik and Csaba Csaki
		5.2.3 Experimental Analyses	
		5.2.4 Suggested Searches and Benchmarks	
	5.3	Displaced Photons	Sven Heinemeyer
6	Exc	lusive mesonic and LFV Higgs decays	
	6.1	Theoretical Predictions: Photon plus a Meson	
	6.2	SM predictions: massive gauge boson plus a meson	Matthias Neubert, Frank Petriello,
	6.3	NP benchmarks for enhanced branching ratios	Cina Isidani Milea Tratt
		6.3.1 Dimension-Six Operators with Minimal Flavor Violation	Gino Isidori, Mike Irou,
		6.3.2 Multi-Higgs-doublet model with natural flavor conservation	Fady Bishara, Jure Zupan,
		6.3.3 Type-II Two-Higgs-Doublet Model	Lea Caminada Konstantinos Nikolopoulos
		6.3.4 Higgs-dependent Yukawa Couplings	
		6.3.5 Randall-Sundrum models	
		6.3.6 Composite pseudo-Goldstone Higgs	
	6.4	Experimental status and prospects	

S. Bressler

2. Recommendations for searches

Simple list

- Signature based approach
 - Similar signatures appears in different models
 - Combination as a second step
- Quote results in terms of $\sigma \times BR$
 - Allows re-interpretation
 - Ease combination
- Event generators and modeling of Higgs p_{T} spectrum
 - Decay products tend to be soft
 - Typically at least three particles in the final state
 - Sensitivity depends on the Higgs p_T spectrum
 - Production: MadGraph followed by hadronization & showering with Pythia
 - X-section normalized to WG1 predictions
 - p_T spectrum re-weighted according to HRES

3. No MET: $H \rightarrow XX \rightarrow 4Y$ - study *@* parton level

- Typical signature in many models
 - NMSSM H decays to two light (pseudo-)scalars
 - Dark matter no SU(2) WIMP, additional singlet state in a dark sector
 - Hidden naturalness

. . .

Higgs exotic decay	our survey on 's	Example	$h \to ss$	ightarrow 4f
Curtin et al. 1312.4	Prese	entation o	of the result	s:
	Projected/Current		qua	arks allowed
Decay	2σ Limit	Produc-	_	Limit on
Mode	on $\mathrm{BR}(\mathcal{F}_{\mathrm{i}})$	tion	$\frac{BR(\mathcal{F}_i)}{BR(non-SM)}$	$\frac{\sigma}{\sigma}$ BR(non-SM)
\mathcal{F}_i	7/8 [14] TeV	Mode	BIC(IIOII-3M)	7/8 [14] TeV
bbbb	$0.7^R [0.2^L]$	W	0.8	$0.9 \ [0.2]$
$b\bar{b} au au$	$> 1 \ [0.15^L]$	V	0.1	> 1 [1]
$b\bar{b}\mu\mu$	$(2-7) \cdot 10^{-4}$	G	$3 imes 10^{-4}$	0.6 - 1
	$[(0.6-2)\cdot 10^{-4}]$			[0.2 - 0.7]
$\tau \tau \tau \tau$	$0.2 - 0.4^R$ [U]	G	0.005	40 - 80 [U]
$ au au\mu$	$(3-7) \cdot 10^{-4} T [U]$	G	$3 imes 10^{-5}$	10 - 20 [U]
$\mu\mu\mu\mu$	$1 \cdot 10^{-4 R}$ [U]	G	$1 \cdot 10^{-7}$	1000 [U]
Bup II tri				This can be read
Kun n u	ggers			in terms of a bound
	ery important for			in terms of a bound

3. No MET: $H \rightarrow XX \rightarrow 4Y$ - study *@* parton level

- Typical signature in many models
 - NMSSM H decays to two light (pseudo-)scalars
 - Dark matter no SU(2) WIMP, additional singlet state in a dark sector
 - Hidden naturalness

. . .

Test case: $H \rightarrow 2a \rightarrow 4b$

• Additional singlet (pseudo-)scalar

$$\mathcal{L}^{\text{BSM}} \supset i y_b^a a \bar{b} \gamma_5 b + \frac{1}{2} \lambda_{aH} (H^{\dagger} H) a^2 + \frac{1}{2} m_a^2 a^2,$$

- Considered: ggF, VBF, VH
- Compared LO to NLO
 - Comparing MadGraph & Powheg+Pythia results
- Re-weighting according to HRES predictions not yet done

Test case: $H \rightarrow 2a \rightarrow 4b$

Possible discriminators

- Studied for m_a in the range [20,60] GeV
 - MadGraph/Powheg+Pythia8 in good agreement
- Leading b $p_T \rightarrow Soft$ spectra
- Leading a pT

Test case: $H \rightarrow 2a \rightarrow 4b$

Possible discriminators

- Studied for m_a in the range [20,60] GeV
- Leading b p_T
- Leading a pT
- $\Delta R(a,a)$
 - Lighter a's are back to back
- $\Delta R(b,bbar)$
 - b's from lighter a are collinear

Take away

- MadGraph re-weighted according to HRES is sufficient
- Soft objects in the final state

 → Pay special attention to selection
 efficiency and triggers

4. Semi-invisible decays

- Typical signature in many models
 - Least studied scenario so far

4. H \rightarrow 2 γ +MET - feasibility study

- Estimated sensitivity @ sqrt(S)=14 TeV with 100 fb⁻¹
- MadGraph+Pythia followed by DELPHES with CMS card
- Considered: ggF, ZH

Non-resonant

- H \rightarrow XX; X \rightarrow γ Y
 - Y stable neutral
 - Example GMSB
- Benchmark
 - GMSB cascade decay
 - Gravitino mass ~0
 - Neutralino mass in the range [10,60]
 GeV

Resonant

- $H \rightarrow S_1S_2$; $S_1 \rightarrow 2\gamma$; S_2 escapes detection
 - Benefits from a 2γ peak
- Benchmark
 - S₁ and S₂ have the same mass in the range [10,60] GeV

4. H \rightarrow 2 γ +MET - feasibility study

SM background

Analysis strategy

• Main sources: $\gamma/Z/W$ +jets

• Derived from the trigger

- Di-boson
- QCD sub-dominant

	gluon Fusion			ZH
Variable	Asymmetric $\gamma\gamma$	Symmetric $\gamma\gamma$	$\gamma + E_{\mathrm{T}}^{\mathrm{miss}}$	
Number of photons	>1	>1	> 1	> 1
$p_T(\gamma_1)$	$> 45 { m ~GeV}$	$> 40 { m ~GeV}$	$> 55 { m ~GeV}$	$> 15 { m ~GeV}$
$ \eta(\gamma_1) $	< 2.5	< 2.5	< 1.4	< 2.5
$p_T(\gamma_2)$	$> 30 { m ~GeV}$	$> 40 { m ~GeV}$	$> 15 { m ~GeV}$	$> 15 { m ~GeV}$
$ \eta(\gamma_2) $	< 2.5	< 2.5	< 2.5	< 2.5
$M(\gamma\gamma)$	$\in [15, 100] \text{ GeV}$	$< 100 { m ~GeV}$	$< 100 { m ~GeV}$	$< 100 { m ~GeV}$
$E_{ m T}^{ m miss}$	$> 40 { m ~GeV}$	$> 40 { m ~GeV}$	$> 50 { m ~GeV}$	$> 40 { m ~GeV}$
Number of leptons	< 1	< 1	< 1	-
Number of muons	-	-	-	> 1
$p_T(\mu_{1,2})$	-	-	-	$> 20 { m ~GeV}$
$ \eta(\mu_{1,2}) $	-	-	-	< 2.5
$M(\mu\mu)$	-	-	-	$\in [70, 110] \text{ GeV}$

Resonant case - cut also on $m_{\gamma\gamma}$

4. H \rightarrow 2 γ +MET - feasibility study

Expected sensitivity

- 5σ sensitivity for the different trigger scenarios
 - No systematic uncertainties
 - ggF

- 5σ sensitivity for the different trigger scenarios
 - 10% systematic uncertainties
 - ZH

- Particles with proper life time $C\tau \ge \mu m$ arise in many BSM scenarios
- Decays in a measurable distance from the interaction point
- An on-going experimental/phenomenological effort

hXX-HF

- $h \rightarrow XX \rightarrow SM$
 - X hidden sector (pseudo-)scalar
 - Coupling to SM inherited from mixing with SM-like Higgs
 - Preferred third generation fermions
 → Heavy Flavour (HV)

Displaced photons

- Low scale GMSB
 - Long-lived bino like neutralino

Displaced spin-one bosons

• $H \rightarrow \gamma_D \gamma_D \rightarrow SM$

4

- Particles with proper life time $C\tau \ge \mu m$ arise in many BSM scenarios
- Decays in a measurable distance from the interaction point
- An on-going experimental/phenomenological effort

hXX-HF

- $h \rightarrow XX \rightarrow SM$
 - X hidden sector (pseudo-)scalar
 - Coupling to SM inherited from mixing with SM-like Higgs
 - Preferred third generation fermions
 → Heavy Flavour (HV)

- Several searches are being done
- Improve sensitivity by requiring 1 DV
 - Low threshold on associated objects is needed for triggering

Displaced photons

- Low scale GMSB
 - Long-lived bio like neutralino

Displaced spin-one bosons

• $H \rightarrow \gamma_D \gamma_D \rightarrow SM$

hXX-HF - simplified model

$$\mathcal{L} \supset \frac{1}{2} (\partial_{\mu} X)^2 - \frac{1}{2} m_X^2 X^2 - g_X v h X X - \epsilon_v v^2 h X$$

- Small h/X mixing
 - $\epsilon_v \leq 10^{-4}$ has negligible effect on m_h and BR(h \rightarrow SM)
- $h \rightarrow XX$ controlled by g_X effective coupling independent of the mixing

- Realized in MadGraph
 - http://insti.physics.sunysb.edu/~curtin/hahm_mg.html
- Building a model library is a parallel effort to the Y4 report

Neutral naturalness

- Top partner related to the top through a discrete symmetry
 → leads to color neutral top
- Hidden QCD group ensures similar running of the top and its partner
 - Needed for loop cancellation
- Realization of the hidden valley scenario
 - Allows for the hidden gluons, hadrons, glueballs and quarkonia
- Realizations: Folded SUSY and Twin Higgs
- Reach list of suggested searches
 - One DV + associated object
 - Trigger on the other object
 - Better sensitivity to shorter life times

$H \rightarrow V \gamma$

In the SM

- A probe of the Higgs coupling to light quarks
 - Sensitivity only at Hadron Colliders due to the small BR

Mode	Branching Fraction $[10^{-6}]$				
Method	NRQCD $[60]$	LCDA LO $[59]$	LCDA NLO $[62]$		
${ m Br}(H o ho^0\gamma)$	—	19.0 ± 1.5	16.8 ± 0.8		
${ m Br}(H o \omega \gamma)$	—	1.60 ± 0.17	1.48 ± 0.08		
${ m Br}(H o \phi \gamma)$	_	3.00 ± 0.13	2.31 ± 0.11		
${ m Br}(H o J/\psi\gamma)$	_	2.95 ± 0.17	$2.79{}^{+0.16}_{-0.15}$		
$\operatorname{Br}(H \to \Upsilon(1S) \gamma)$	$(0.61 {}^{+1.74}_{-0.61}) \cdot 10^{-3}$	_	$(4.61^{+1.76}_{-1.23})\cdot 10^{-3}$		
$\operatorname{Br}(H o \Upsilon(2S) \gamma)$	$(2.34 {}^{+ 0.76}_{- 1.00}) \cdot 10^{-3}$	_	$(2.02 {}^{+1.86}_{-1.28}) \cdot 10^{-3}$		
$\operatorname{Br}(H o \Upsilon(3S) \gamma)$	$(2.13 {}^{+ 0.76}_{- 1.13}) \cdot 10^{-3}$	-	$(2.44^{+1.75}_{-1.30})\cdot 10^{-3}$		

Table 2: Theoretical predictions for the $H \rightarrow V\gamma$ branching ratios in the SM, obtained using different theoretical approaches.

$H \rightarrow VP$ (massive gauge bosons)

In the SM

Z	VP mode	P mass	F_P	$\mathcal{B}^{\mathrm{SM}}$
	$W^{-}\pi^{+}$	$139.57018 \pm 0.00035 \; \mathrm{MeV}$	$126.6\pm1.4~{\rm MeV}$	$0.42 imes 10^{-5}$
5	W^-K^+	$493.677\pm0.016~{\rm MeV}$	$35.2\pm0.3~{\rm MeV}$	$0.33 imes 10^{-6}$
7*5	$W^-D_s^+$	$1968.30\pm0.11~{\rm MeV}$	$248.6\pm2.4~{ m MeV}$	$1.6 imes 10^{-5}$
2 1	W^-D^+	$1869.61\pm0.09~{\rm MeV}$	$47.07 \pm 2.4 \text{ MeV}$	$0.58 imes 10^{-6}$
$\leq \parallel$	W^-B^+	$5279.29\pm0.15~{\rm MeV}$	$0.79\pm0.10~{ m MeV}$	1.6×10^{-10}
Leading	$W^-B_c^+$	$6275.1 \pm 1.0 ~\rm MeV$	$7.82\pm0.42~{ m MeV}$	$1.6 imes 10^{-8}$
Leaung	$Z^0\pi^0$	$134.9766\pm0.0006~{\rm MeV}$	92.1 ± 1.0 MeV	$0.23 imes 10^{-5}$
,	$Z^0\eta_c$	$2984.3\pm0.84~{\rm MeV}$	197.4 ± 0.00 MeV	$1.0 imes 10^{-5}$
Z	·			
~~~~	$VP^{\star}$ mode	$P^{\star}$ mass	$\sum_{P}^{\star}/2$	$\mathcal{B}^{SM}$
	$W^- \rho^+$	$775.26 \pm 0.25 \; { m MeV}$	210 2 5.5 MeV [12]	$1.5 \times 10^{-5}$
γ* - · ·	$W^-K^{\star+}$	$891.66 \pm 0.026$ MeV	$7.85.8 \pm 0.3 \text{ MeV}$	$4.3 \times 10^{-7}$
3_1	$W^-D^+$	$2010.26 \pm 0.07 \text{ MeV}$	$61.1\pm0.6~{ m MeV}$	$1.3 \times 10^{-6}$
	$W^-D_s^{\star +}$	$2112.1 \pm 0.4$ MeV	$320.5\pm3.1~{ m MeV}$	$3.5 \times 10^{-5}$
Sub-leading	$W^-B^{\star+}$	$5325.2 \pm 0.4 \text{ MeV}$	$194.3 \pm 15.8 \text{ MeV} [13]$	$1.3 \times 10^{-5}$
C	$Z^0 J/\Psi(1S)$	$3096.916 \pm 0.011 \text{ MeV}$	$405 \pm - \text{MeV}$	$3.2 \times 10^{-6}$
	$Z^0 J/\Psi(2S)$	$3686.109 \pm 0.013 \; { m MeV}$	290 $\pm$ - MeV	$1.5 \times 10^{-6}$
Δ	$Z^0\Upsilon(1S)$	$9460.30 \pm 0.26 \; { m MeV}$	$680 \pm - \text{MeV}$	$1.7 \times 10^{-5}$
	$Z^0\Upsilon(2S)$	$10023.26 \pm 0.31 \; {\rm MeV}$	$485$ $\pm$ - MeV	$8.9 \times 10^{-6}$
·····	$Z^0\Upsilon(3S)$	$10355.2 \pm 0.5 \; {\rm MeV}$	$420$ $\pm$ - MeV	$6.7 \times 10^{-6}$
	$Z^0 \rho^0$	$775.26 \pm 0.25 \; { m MeV}$	$216 \pm 5.5 \text{ MeV} [12]$	$1.4 \times 10^{-5}$
Y_	$Z^0\omega^0$	$782.65 \pm 0.12 \; {\rm MeV}$	$216\pm5.5~{\rm MeV}$	$  1.6 \times 10^{-6}$
	$Z^0 \phi^0$	$1019.461 \pm 0.019 \ {\rm MeV}$	$233 \pm 5 { m ~MeV} [14]$	$4.2 \times 10^{-6}$
Negligible		· · · · · ·	D noudo	coolor: D*

P- pseudo-scalar; P*- vector meson

Th. Error

 $\pm 5\%$ 

 $\pm 4\%$ 

 $\pm 4\%$ 

 $\pm 11\%$ 

 $\pm 26\%$ 

 $\pm 11\%$ 

 $\pm 5\%$ 

 $\pm 5\%$ 

Th. Error

 $\pm 6\%$ 

 $\pm 4\%$ 

 $\pm 6\%$ 

 $\pm 6\%$ 

 $\pm 17\%$ 

 $\pm - \%$ 

 $\pm 6\%$ 

 $\pm 6\%$ 

 $\pm 6\%$ 

#### New Physics models

#### Enhanced BR (Flavour conserving)

Model	$\kappa_t$	$\kappa_{c(u)}/\kappa_t$	$ ilde{\kappa}_t/\kappa_t$	$ ilde{\kappa}_{c(u)}/\kappa_t$
SM	1	1	0	0
NFC	$V_{hu}  v_W / v_u$	1	0	0
MSSM	$\cos \alpha / \sin \beta$	1	0	0
$\mathbf{GL}$	$1 + \mathcal{O}(\epsilon^2)$	$\simeq 3(7)$	$\mathcal{O}(\epsilon^2)$	$\mathcal{O}(\kappa_{c(u)})$
GL2	$\cos \alpha / \sin \beta$	$\simeq 3(7)$	$\mathcal{O}(\epsilon^2)$	$\mathcal{O}(\kappa_{c(u)})$
MFV	$1 + \frac{\text{Re}(a_u v_W^2 + 2b_u m_t^2)}{\Lambda^2}$	$1 - \frac{2 \operatorname{Re}(b_u) m_t^2}{\Lambda^2}$	$\frac{\Im(a_u v_W^2 + 2b_u m_t^2)}{\Lambda^2}$	$\frac{\Im(a_u v_W^2)}{\Lambda^2}$
$\mathbf{RS}$	$1 - \mathcal{O} \Big( rac{v_W^2}{m_{KK}^2} ar{Y}^2 \Big)$	$1 + \mathcal{O}\left(\frac{v_W^2}{m_{KK}^2}\bar{Y}^2\right)$	$\mathcal{O}\left(rac{v_W^2}{m_{KK}^2}ar{Y}^2 ight)$	$\mathcal{O}\left(rac{v_W^2}{m_{KK}^2}ar{Y}^2 ight)$
pNGB	$1 + \mathcal{O}\left(rac{v_W^2}{f^2} ight) + \mathcal{O}\left(y_*^2\lambda^2rac{v_W^2}{M_*^2} ight)$	$1 + \mathcal{O}\left(y_*^2 \lambda^2 rac{v_W^2}{M_*^2} ight)$	$\mathcal{O}\!\left(y_*^2\lambda^2rac{v_W^2}{M_*^2} ight)$	$\mathcal{O}\!\left(y_*^2\lambda^2rac{v_W^2}{M_*^2} ight)$

Table 3: Predictions for the flavor diagonal up-type Yukawa couplings in a number of new physics models (see text for details).

Model	$\kappa_b$	$\kappa_{s(d)}/\kappa_b$	$\tilde{\kappa}_b/\kappa_b$	$\tilde{\kappa}_{s(d)}/\kappa_b$
$\mathbf{SM}$	1	1	0	0
NFC	$V_{hd}v_W/v_d$	1	0	0
MSSM	$-\sinlpha/\coseta$	1	0	0
$\operatorname{GL}$	$\simeq 3$	$\simeq 5/3(7/3)$	$\mathcal{O}(1)$	$\mathcal{O}(\kappa_{s(d)}/\kappa_b)$
GL2	$-\sin lpha / \cos eta$	$\simeq 3(5)$	$\mathcal{O}(\epsilon^2)$	$\mathcal{O}(\kappa_{s(d)}/\kappa_b)$
MFV	$1+rac{\operatorname{Re}(a_d v_W^2+2c_d m_t^2)}{\Lambda^2}$	$1-rac{2\mathrm{Re}(c_d)m_t^2}{\Lambda^2}$	$rac{\Im(a_d v_W^2+2c_d m_t^2)}{\Lambda^2}$	$\frac{\Im(a_d v_W^2 + 2c_d  V_{ts(td)} ^2 m_t^2)}{\Lambda^2}$
$\mathbf{RS}$	$1 - \mathcal{O} \Big( rac{v_W^2}{m_{KK}^2} ar{Y}^2 \Big)$	$1 + \mathcal{O}\left(rac{v_W^2}{m_{KK}^2}ar{Y}^2 ight)$	$\mathcal{O}\left(rac{v_W^2}{m_{KK}^2}ar{Y}^2 ight)$	$\mathcal{O}\!\left(rac{v_W^2}{m_{KK}^2}ar{Y}^2 ight)$
pNGB	$1 + \mathcal{O}\!\left(rac{v_W^2}{f^2} ight) + \mathcal{O}\!\left(y_*^2\lambda^2rac{v_W^2}{M_*^2} ight)$	$1 + \mathcal{O} \Big( y_*^2 \lambda^2 rac{v_W^2}{M_*^2} \Big)$	$\mathcal{O}\!\left(y_*^2\lambda^2rac{v_W^2}{M_*^2} ight)$	$\mathcal{O}\!\left(y_*^2\lambda^2rac{v_W^2}{M_*^2} ight)$

Table 4: Predictions for the flavor diagonal down-type Yukawa couplings in a number of new physics models (see text for details).

#### New Physics models

#### Enhanced BR (Flavour violating)

Model	$\kappa_{ct(tc)}/\kappa_t$	$\kappa_{ut(tu)}/\kappa_t$	$\kappa_{uc(cu)}/\kappa_t$
GL & GL2	$\epsilon(\epsilon^2)$	$\epsilon(\epsilon^2)$	$\epsilon^3$
MFV	$rac{{ m Re} \left( {c_u m_b^2 V_{cb}^{\left( st  ight)} }  ight)}{{\Lambda ^2 }}rac{{\sqrt 2 m_{t(c)} }}{{v_{W_a} }}$	$rac{{ m Re} \left( {c_u m_b^2 V_{ub}^{\left( st  ight)}}  ight)}{{\Lambda ^2 }}rac{{\sqrt 2 {m_{t\left( u  ight)}}}}{{v_W }}$	$\frac{\operatorname{Re}\left(c_{u}m_{b}^{2}V_{ub(cb)}V_{cb(ub)}^{*}\right)}{\Lambda^{2}}\frac{\sqrt{2}m_{c(u)}}{\sqrt{2}m_{wW}}$
$\mathbf{RS}$	$\sim \lambda^{(-)2} rac{m_{t(c)}}{v_W} ar{Y}^2 rac{v_W^2}{m_{KK_c}^2}$	$\sim \lambda^{(-)3} rac{m_{t(u)}}{v_W} ar{Y}^2 rac{v_W^2}{m_{KK_u}^2}$	$\sim \lambda^{(-)1} rac{m_{c(u)}}{v_W} ar{Y}^2 rac{v_W^2}{m_{KK}^2}$
pNGB	$\mathcal{O}(y_*^2 rac{m_t}{v_W} rac{\lambda_{L(R),2} \lambda_{L(R),3} m_W^2}{M_*^2})$	$\mathcal{O}(y_*^2 rac{m_t}{v_W} rac{\lambda_{L(R),1} \lambda_{L(R),3} m_W^2}{M_*^2})$	$\mathcal{O}(y_*^2rac{m_c}{v_W}rac{\lambda_{L(R),1}\lambda_{L(R),2}m_W^2}{M_*^2})$

Table 5: Predictions for the flavor violating up-type Yukawa couplings in a number of new physics models (see text for details). In the SM, NFC and the tree-level MSSM the Higgs Yukawa couplings are flavor diagonal. The estimates of the CP-violating versions of the flavor-changing transitions,  $\kappa_{ij}/\kappa_t$ , are the same as the CP-conserving ones, apart from substituting "Im" for "Re" in the "MFV" row.

Model	$\kappa_{bs(sb)}/\kappa_b$	$\kappa_{bd(db)}/\kappa_b$	$\kappa_{sd(ds)}/\kappa_b$
GL & GL2	$\epsilon^3(\epsilon^2)$	$\epsilon^2$	$\epsilon^3(\epsilon^4)$
MFV	$rac{{ m Re} \left( {c_d m_t^2 V_{ts}^{(st )} }  ight)}{{\Lambda ^2 }}rac{{\sqrt 2 {m_{s(b)} }}}{{v_{W_2} }}$	$rac{\mathrm{Re}\left(c_{d}m_{t}^{2}V_{td}^{(*)} ight)}{\Lambda^{2}}rac{\sqrt{2}m_{d(b)}}{v_{W_{0}}}$	$\frac{\operatorname{Re}\left(c_{d}m_{t}^{2}V_{ts(td)}^{*}V_{td(ts)}\right)}{\Lambda^{2}}\frac{\sqrt{2}m_{s(d)}}{\sqrt{2}m_{s(d)}}$
$\mathbf{RS}$	$\sim \lambda^{(-)2} rac{m_{b(s)}}{v_W} ar{Y}^2 rac{v_W^2}{m_{KK}^2}$	$\sim \lambda^{(-)3} rac{m_{b(d)}}{v_W} ar{Y}^2 rac{v_W^2}{m_{KK}^2}$	$\sim \lambda^{(-)1} rac{m_{s(d)}}{v_W} ar{Y}^2 rac{v_W^2}{m_{KK}^2}$
pNGB	$\mathcal{O}(y_*^2 rac{m_b}{v_W} rac{\lambda_{L(R),2} \lambda_{L(R),3} m_W^2}{M_*^2})$	$\mathcal{O}(y_*^2rac{m_b}{v_W}rac{\lambda_{L(R),1}\lambda_{L(R),3}m_W^2}{M_*^2})$	$\mathcal{O}(y_*^2rac{m_s}{v_W}rac{\lambda_{L(R),1}\lambda_{L(R),2}m_W^2}{M_*^2})$

Table 6: Predictions for the flavor violating down-type Yukawa couplings in a number of new physics models (see text for details). In SM, NFC and tree level MSSM the Higgs Yukawa couplings are flavor diagonal. The estimates of the *CP*-violating versions of the flavor-changing transitions,  $\kappa_{ij}/\kappa_b$ , are the same as the *CP*-conserving ones, apart from substituting "Im" for "Re" in the "MFV" row.

### Prospects for H→DW

- Clean signature
  - Trigger on the high  $p_T$  lepton (muon) from the W decay
  - Displaced vertex from the D decay
- Focus on the decay  $H \to WD_s^{(*)}$ 
  - ggF & VBF
  - Background W+c-quark
    - SM production already measured a proof that hadronic c-meson decays can be measured
- Main discriminant the Higgs mass
- Expected reach @ 3000 fb⁻¹ BR( $H \rightarrow WD_s^{(*)}$ )<7×10⁻⁴

# Summary & Future plans

- Y4 Exotic Higgs decays were addressed for the first time within the LHCHXS
  - Identified the 4 main topics
  - Defined the theoretical neighborhood (longer surveys)
  - Point at the experimental challenges (soft objects, DV, trigger)
- Y5 Focus on feasibility studies
  - Similar to the H $\rightarrow$ 2 $\gamma$ +MET study presented here
  - Suggest analysis strategy
  - Exploit different triggers
  - Investigate sub-dominant decays