Recent development of fast timing PMT

K. Inami (Nagoya univ.) 2015/9

MCP-PMT for fast timing measurement

- Micro-Channel-Plate
 - Tiny electron multipliers
 - Diameter ~10μm, length ~400μm
 - High gain
 - ~10⁶ for two-stage type
 - \rightarrow Fast time response
 - Pulse rise time <400ps

Timing resolution < 50ps for single photon

can operate under high magnetic field (~1T)

MCP-PMT output

• Hamamatsu R3809U-50 (multi-alkali photo-cathode)

Application: TOP counter in Belle II

- TOP (Time Of Propagation) counter
 - Developing to upgrade the barrel PID detector
 - For Super B factory
 - L_{peak}~10^{35~36}/cm²/s, 20~100 times higher than present
 - Need to work with high beam BG
 - To improve K/ π separation power
 - Physics analysis: $B \rightarrow \pi \pi/K\pi$, $\rho\gamma$, $K\nu\nu$ etc.
 - Flavor tag, Full reconstruction, etc.
 - Measures Cherenkov radiation cone by 2D position + timing
 - Time of Propagation of internal reflected photons
 - + TOF from IP

Application: High resolution TOF

• TOF with Cherenkov light

- Small-size quartz (cm~mm length)
 - Cherenkov light (Decay time ~ 0) extremely reduce time dispersion compared to scintillation (τ ~ ns)
- MCP-PMT (multi-alkali photo-cathode)
 - TTS < 50ps even for single photon gives enough time resolution for smaller number of detectable photons

- Test results
 - Time difference between two counters
 - Timing resolution = 6.2ps
 - ~180photon detecton
 - Intrinsic resolution = 4.7ps

MCP-PMTs performance

• Timing properties under B=0~1.5T parallel to PMT

HPK6	BIN	P8	HPK10	Bu	rle25	100
MCP-PMT		НРК6	BINP8	HPK10	Burle25]
		R3809U-50-11X	N4428	R3809U-50-25X	85011-501	
PMT size(mm)		45	30.5	52	71x71	
Effective size(mm)		11	18	25	50x50	
Channel diameter(µm)		6	8	10	25]
Length-diameter ratio		40	40	43	40	
Max. H.V. (V)		3600	3200	3600	2500]
photo-cathode		multi-alkali	multi-alkali	multi-alkali	bi-alkali	
Q.E.(%) (λ=408nm)		26	18	26	24	

Pulse response

- Pulse shape (B=0T)
 - Fast rise time (~500ps)
 - Broad shape for BINP8
 - Due to mismatch with H.V. supply divider
 - No influence for time resolution
- TTS v.s. Gain
 - For several HV and B-field conditions
 - 30~40ps resolution was obtained for gain>10⁶
- Narrower channel shows better TTS.

MCP-PMT for TOP counter

- Fast rise time: ~400ps
- Gain: >1x10⁶ at B=1.5T
- T.T.S.(single photon): ~35ps at B=1.5T
- Position resolution: <5mm

→ Mass production (>500PMTs) done

Photocathode efficiency

- Quantum Efficiency (QE)
 - With a reference photodiode.

 $QE_{PMT} = [I_{PMT} / I_{PD}] * QE_{PD}$ I_{PMT} : photo-current between the p.c. and the front surface of the 1st MCP.

- 2D scan on the PMT window.
- $-\lambda$ scan: 350-700 nm is our interest.
- Super-bialkali technique tested

Photocathode improvement

- Apply similar method to multi-alkali photocathode
 - Major photocathode cathode for Hamamatsu MCP-PMT
 - QE Improved during mass production
 - On average, 28.1% of 283 conventional-MCP-PMTs and 29.1% of 231
 ALD-MCP-PMTs at 360 nm.

Issues under the high hit rate experiment

- Timing performance degradation
 - Gain drops when MCP current is saturated due to many electron multiplication in the channel.
- Photocathode aging
 - Electron multiplication causes out gas and ion feedback to photocathode.
 - Photocathode QE degrades

Rate dependence

Aging of photocathode

- Round-shape MCP-PMTs
 - With and without aluminum layer on MCP
 - Protect feedback ions
 - Obtain sufficient lifetime, by putting Al on MCP
 - TTS is stable, if gain>~10⁶

Lifetime for square-shape MCP-PMT

- Improvement for square-shape MT
 - With Al layer on MCP
 - Al protection layer on 2nd MCP
 - Recover collection efficiency $(35\% \rightarrow 60\%)$
 - Expect small effect to lifetime
 - Because of $1/10^3$ smaller number of electrons in 1st MCP compared to 2nd MCP

Measured PMT	YJ0006	YJ0011
Al protection layer	1 st MCP	2 nd MCP
Initial gain ($ imes 10^6$)	0.41	1.1

Cause of aging

• Difference of inner structure btw round-shape and square-shape MCP-PMTs

Neutral gas from 2nd MCP can pass through side gap.

Stainless tube

- We suspected that neutral gas through side gap causes QE degradation.
- Ceramic insulator added to block the path \searrow

ALD coated MCP-PMT

- During mass-production, we noticed lifetime improved PMTs are needed along with the progress of BG sim.
- ALD (Atomic layer deposition) technique applied to MCP production.
 - Higher gain compared with conventional type
 - Less outgas/ion emission for same gain operation
- Tested ALD MCP-PMT → Confirmed improved lifetime

Nucl. Instr. Meth. A766, 148 (2014)

Further improvement for aging

• ALD coated MCP improves lifetime, but it is close to the requirement

- Further improved PMTs developed with Hamamatsu.
 - Tried six methods of process to improve the lifetime.

Extended lifetime

Summary

- MCP-PMT shows very fast timing response.
- We have developed square-shape MCP-PMT.
 - With Hamamatsu photonics
 - Gain~10⁶, TTS<40ps for single photon detection
- Mass production for Belle-II TOP
 - Successfully; sufficient timing resolution <40ps
 - QE ~ 28% at 360nm with good flatness
- Lifetime has been improved.
 - By blocking the path, where an out-gas from the anode side can reach to the photo-cathode.
 - By introducing MCPs with ALD technique
 - Further improved ALD MCP-PMT developed
 - Finally, >20C/cm² lifetime was achieved.
 - Under production process for Belle-II TOP counter

