

Diffraction at CMS

Grzegorz Brona (University of Warsaw) on behalf of

CMS Collaboration

9.09.2015

HESZ 2015 Nagoya, Japan

Motivation

- Measurement of the fundamental Standard Model parameter diffractive cross sections
- Understand mechanism of the diffractive processes dynamics and interplay between soft and hard regimes
- Testing phenomenological models in soft region and pQCD with Pomeron in hard region
- Study beyond DGLAP mechanisms: BFKL, saturation
- Understanding of background for new processes (BSM)

Outline

- CMS detector at forward rapidities
- Soft diffraction topologies
- Events with forward gap, events with central gap, cross section of the single and double dissociation
- Forward rapidity gap cross section
- Hard diffractive dijet production
- Dijet production with a large rapidity gap
- Summary

CMS at forward rapidities

- Tracker $|\eta| < 2.4$, $p_{\tau} > 100 \text{ MeV}$
- Electromagnetic calorimeter ECAL
- Hadronic Calorimeter HCAL
- Muon chambers

CMS at forward rapidities

- Tracker $|\eta| < 2.4$, $p_{\tau} > 100 \text{ MeV}$
- Electromagnetic calorimeter ECAL
- Hadronic Calorimeter HCAL
- Muon chambers

- Hadronic Forward calorimeters (HF) 3< |n| <5
- Very Forward Calorimeter (CASTOR) 5.2< | n | < 6.6
- Zero Degree Calorimeter (ZDC)
- Beam Scintillator Counters BSC: 32 < | n | < 47
- Forward Shower Counters FSC: $6 < |\eta| < 8$

+ Totem (T1/T2 tracking detectors and RP roman pots) separate experiment

Soft Diffraction

non-diffraction

single diffractive dissociation (SD)

double diffractive dissociation (DD)

central diffraction

send to PRD, arXiv:1503.08689 CMS-PAS-FSQ-12-005

Selection:

- ~20 μb^{-1} of low pile-up data (μ =0.14), from 2010
- Online: activity in either of the BSC Minimum Bias trigger
- No vertex requirement (low diffractive masses 12<Mx<100 GeV accepted)
- Diffractive offline selection: Large Rapidity Gaps within $|\eta| < 4.7$

MC Models

Monte Carlo:

- PYTHIA8-4C
 - diffraction generated according to Schuler&Sjostrand model from PYTHIA6
 - SD and DD cross sections scaled down by 10% and 12%
- PYTHIA8-MBR (Minimum Bias Rockefeler model)
 - diffraction generated based on renormalized Regge theory model
 - developed for CDF
 - linear parametrization of the Pomeron trajectory $a(t) = 1 + \epsilon + a't$
 - $a' = 0.25 \ GeV^{-2}$, $\epsilon = 0.08 \ or \ 0.104$
 - DD cross section scaled down by 15%
- PYTHIA6-Z2*
- PHOJET
- QGSJET-II

cosmic rays MC

EPOS

Diffractive event topologies

Three experimental topologies based on the position of the LRG without CASTOR information

Diffractive event topologies

- $\eta_{\text{max}} \left(\eta_{\text{min}} \right)$ highest (lowest) η of the particle candidate with $|\eta| \! < \! 4.7$
- $\Delta \eta = \eta^0_{max} \eta^0_{min}$

Forward gap

- Variable ξ defined as:
- Reconstructed:
- And corrected for undetected particles: (PYTHIA 8 MBR)

$$\xi_{X} = \frac{M_{X}^{2}}{s}$$

$$\xi_{X}^{rec} = \frac{\sum_{i=1}^{\infty} (E^{i} - p_{z}^{i})}{\sqrt{s}}$$

$$\log_{10} \xi_X^{cal} = \log_{10} \xi_X^{rec} + C(\xi_X^{rec})$$

Forward gap

Detector level distributions

Cross section measured in bins of $\xi_{_{\boldsymbol{X}}}$

- Data unfolded (acceptance and migration corrections)
- PYTHIA 8 MBR
- Corrections for pile-up

Forward gap

no-CASTOR tag

Castor tag

- Data with tag favor $\varepsilon = 0.08$
- P8-4C and P6-2Z* higher than data in no-CASTOR tag
- P8-4C and P6-2Z* predicts raising behavior in no-CASTOR tag
- PHOJET, QGSJET, EPOS cannot describe data in tag sample

Central gap

$$\Delta \eta = \eta_{\mathit{max}}^{0} - \eta_{\mathit{min}}^{0}$$

• Reconstructed:

 $\Delta\eta_{\it rec}$

 And corrected for detector effects:

$$\Delta \eta_{cal} = \Delta \eta_{rec} - C$$

 $\log_{10} M_{Y} > 1.1$

Unfolding (response matrix from PYTHIA MBR)

- P8-MBR describes the data
- P8-4C underestimates
- P6-Z2* overestimates
- PHOJET, QGSJET, EPOS underestimates

Integrated cross section measured for 3 samples:

• FG2, no-CASTOR tag
$$-5.5 < \log_{10} \xi_X < -2.5$$
 $\log_{10} M_Y < 0.5$

• FG2, CASTOR tag
$$-5.5 < \log_{10} \xi_X < -2.5$$
 $0.5 < \log_{10} M_Y < 1.1$

• CG
$$\Delta \eta > 3$$
 $\log_{10} M_X > 1.1$ $\log_{10} M_Y > 1.1$

Cross section	$\sigma_{\text{no-CASTOR}}(\text{mb})$ SD dominated	$\sigma_{ m CASTOR}$ (mb) DD dominated	$\sigma_{\rm CG}$ (mb) DD dominated
Data	$2.99 \pm 0.02^{+0.32}_{-0.29}$	$1.18 \pm 0.02 \pm 0.13$	$0.58 \pm 0.01^{+0.13}_{-0.11}$
PYTHIA 8 MBR	3.05	1.24	0.54
Pythia 8 4C	3.31	1.10	0.40
PYTHIA 6 Z2 *	3.86	1.52	0.78
PHOJET	3.06	0.63	0.32
qgsjet-ii 03	2.63	0.48	0.22
qgsjet-ii 04	1.70	0.78	0.37
EPOS	2.99	0.85	0.31

From no-CASTOR tag sample, visible SD cross section:

Substraction of DD component → from PYTHIA 8 MBR

•
$$\sigma^{SDvis} = 4.06 \pm 0.04 (stat)_{-0.63}^{+0.69} (syst) mb$$

$$-5.5 < \log_{10} \xi_X < -2.5$$

From CASTOR tag sample, visible DD cross section:

•
$$\sigma_{CASTOR}^{DDvis} = 1.06 \pm 0.02 (stat) \pm 0.12 (syst) mb$$

$$-5.5 < \log_{10} \xi_X < -2.5$$

$$0.5 < \log_{10} M_y < 1.1$$

From CG sample, visible DD cross section:

•
$$\sigma_{CG}^{DDvis} = 0.56 \pm 0.01 (stat)_{-0.13}^{+0.15} (syst) mb$$

$$\Delta \eta > 3$$

$$\log_{10} M_X > 1.1$$

$$\log_{10} M_{y} > 1.1$$

Extrapolation to the not observed region: PYTHIA 8 MBR (ε = 0.08)

$$\sigma^{SD} = 8.84 \pm 0.08 (stat)_{-1.38}^{+1.49} (syst)_{-0.37}^{+1.17} (extr) mb$$
 $\xi_{X(Y)} < 0.05$

$$\sigma^{DD} = 5.17 \pm 0.08 (stat)_{-0.57}^{+0.55} (syst)_{-0.51}^{+1.62} (extr) mb \qquad \Delta \eta > 3$$

CMS results consistent with MBR predictions - SD cross section weakly rising with energy

CMS results consistent with MBR and KP model predictions - DD cross section weakly rising with energy

Pseudorapidity gap cross section

• Forward rapidity gap - the largest of the two empty regions extending from the edge of the detector acceptance ($|\eta|$ =4.7) to the nearest particle candidate

$$\Delta \eta^{F} = max(\eta_{min} - (-4.7), \eta_{max} - (4.7))$$

• Unfolding done with PYTHIA 8 MBR with demand of at least 1 stable particle with p_{τ} >200 MeV and $|\eta|$ <4.7

Pseudorapidity gap cross section

- Exponential falling non-diffractive contribution
- Diffractive plateau at $\Delta \eta_F > 3$
- mixture of SD and DD events
- Best described: PYTHIA8+MBR with 0.08 intercept.

Differences in acceptance

• Cross section:

$$\frac{d\sigma}{d\xi dt} = \sum \int dx_1 dx_2 x_1 x_2 f(\xi, t) f_{IP}(x_1, \mu) \frac{f_p(x_2, \mu)}{\hat{\sigma}}$$

- Rescattering processes (soft, semi-hard)
- Reduction of the cross section: $\frac{d\sigma_{\exp}}{d\xi dt} = S^2(...)\frac{d\sigma}{d\xi dt}$

Selection:

- $\sim 2.7 \text{ nb}^{-1}$ of low pile-up data ($\mu = 0.09$), from 2010
- Online: 6 GeV uncorrected jet p_{τ} (>95% efficient for dijets with p_{τ} >20 GeV)
- A primary vertex with |z|<24 cm
- Quality cuts imposed on jets
- Two jets with p_{τ} >20 GeV and in $|\eta|$ < 4.4

→ 277 953 events

• η_{MAX} < 3 (η_{MIN} > -3), corresponding to rap-gap >1.9

→ 442 events

Monte Carlo:

- PYTHIA8-tune1
 - Inclusive sample
 - Non-diffractive dijets sample
 - · Diffractive dijets sample
- PYTHIA6-Z2, PYTHIA6-D6T
- POMPYT, POMWIG
 - SD events
 - Pomeron flux is based on the QCD fits to HERA
- POWHEG
 - NLO calculations
 - Hadronisation with PYTHIA8-tune1
- Difference between PYTHIA8 and POMPYT/POMWIG in Pomeron flux

Leading jet η (before and after η_{MAX} cut)

- PYTHIA6-Z2+POMPYT
- POMPYT x 0.23

- PYTHIA6-D6T+POMPYT
- POMPYT \times 0.17

- PYTHIA8-tune1
- $SD+DD \times 2.5$

• After η_{MAX} cut - diffractive part enhanced

• Cross section:

$$\frac{d\sigma_{jj}}{d\widetilde{\xi}} = \frac{N_{jj}^i}{L \cdot \epsilon \cdot A^i \cdot \Delta \widetilde{\xi}^i}$$

- PYTHIA6 and PYTHIA8 without hard diffraction cannot describe the data
- POMPYT, POMWIG predicts more events than in data (factor ~5)
- PYTHIA8 SD+DD has to be scaled by a factor ~2 up
- Estimate of the rapidity-gap survival probability: 0.12 (from POMPYT/POMWIG)
- From POWHEG it is: 0.08

- Jets separated by a large rapidity gap
- Color singlet exchange
- Probe BFKL dynamics
- Rescattering processes rap-gap survival

Selection:

- ~8 pb⁻¹ of low pile-up data from 2010
- Three samples of dijets with the lower energy jet in p_{τ} bins:

40-60 GeV, 60-100 GeV, 100-200 GeV

- A primary vertex with |z|<24 cm (0, 1 vertices)
- Quality cuts imposed on jets

Selection:

- $\eta_{jet1} \times \eta_{jet2} < 0$ (jets in different hemispheres)
- $|\eta_{jet1,2}| > 1.5$
- Number of tracks calculated in $|\eta|<1$ interval \rightarrow tracks with $p_{\tau} > 0.2$ GeV

Monte Carlo:

- PYTHIA6-Z2* → LO DGLAP
- HERWIG6 → the hard color-singlet exchange included according to Mueller-Tang model (simplified BFKL calculations containing the LL terms) + JIMMY

Events generated by HERWIG6 reweighted:

$$\exp(a + b \cdot p_{\mathrm{T}}^{\mathrm{jet2}})$$

$$a = -0.88$$
, $b = 0.01 \, GeV^{-2}$

Number of tracks in the central rapidity interval

- Clear excess of gap events over PYTHIA6 predictions first bins
- Excess can be described with:

Number of events in first 5 bins

Total number of events

 $f_{\text{CSE}} = \frac{N_{\text{events}}(S) - N_{\text{bkg}}(S)}{N_{\text{events}}}$

Number of events in first S bins from non Color Singlet Exchange (CSE)

Negative binomial distribution fitted

Tracks from jet (noMPI)

• f_{csE} calculated in 2 first bins (for low and medium range) and 3 first bins (for the highest range)

 Comparison with Muller-Tang model without scalling factor

- Similar measurements for CDF and D0 (increase with jet2 $p_{\scriptscriptstyle extsf{T}}$)
- Suppresion with the center-of-mass energy factor ~2

Summary

- CMS performed measurement of diffractive dissociation cross section in pp
- Extrapolation of the SD and DD to the regions ξ < 0.05 and $\Delta\eta$ > 3 gave:

$$\sigma^{SD} = 8.84 \pm 0.08 (stat)^{+1.49}_{-1.38} (syst)^{+1.17}_{-0.37} (extr) mb$$

$$\sigma^{DD} = 5.17 \pm 0.08 (stat)^{+0.55}_{-0.57} (syst)^{+1.62}_{-0.51} (extr) mb$$

- PYTHIA8-MBR describes the data in all the measured regions
- Data are consistent with SD and DD cross sections weakly rising with energy
- · Hard diffractive jets observed and cross-section measured
- Jet-gap-jet events observed for the first time at the LHC
- Clear beyond LO DGLAP dynamics needed to describe the spectra shapes

Spares

Extrapolation

i	MC model	f^{SD}	$f_{\mathrm{MBR}}^{\mathrm{SD}}$
1	PYTHIA 8 MBR ($\varepsilon = 0.08$)	2.18 (1.00)	2.18 (1.00)
2	рутніа 8 4С	2.32 (1.06)	2.51 (1.15)
3	PYTHIA 6 Z2*	2.29 (1.06)	2.89 (1.34)
4	PHOJET	2.06 (0.95)	2.18 (1.00)
5	QGSJET-II 03	2.72 (1.25)	3.19 (1.46)
6	QGSJET-II 04	3.62 (1.66)	2.30 (1.06)
7	EPOS	3.44 (1.58)	2.15 (0.99)
8	PYTHIA 8 MBR ($\alpha' = 0.125$)	2.27 (1.04)	2.34 (1.07)
9	PYTHIA 8 MBR ($\varepsilon = 0.104$)	2.23 (1.03)	2.42 (1.11)
10	Pythia 8 MBR ($\varepsilon = 0.07$)	2.16 (0.99)	2.09 (0.96)

i	MC model	f^{DD}	fDD MBR
1	PYTHIA 8 MBR ($\varepsilon = 0.08$)	1.92 (1.00)	1.92 (1.00)
2	рүтніа 8 4С	2.52 (1.32)	1.86 (0.97)
3	pythia 6 Z2*	2.39 (1.25)	2.15 (1.13)
4	PHOJET	1.80 (0.94)	0.60 (0.31)
5	qgsjet-11 03		_
6	qgsjet-ii 04	2.04 (1.07)	0.94(0.49)
7	EPOS	4.73 (2.47)	1.93 (1.01)
8	PYTHIA 8 MBR ($\alpha' = 0.125$)	1.97 (1.03)	2.32 (1.21)
9	Pythia 8 MBR ($\varepsilon = 0.104$)	2.00 (1.04)	2.37 (1.24)
10	Pythia 8 MBR ($\varepsilon = 0.07$)	1.88 (0.98)	1.73 (0.90)