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The ALFA detector



The Absolute Luminosity For ATLAS (ALFA) detector

Build to measure elastically scattered protons at urad angles.

Located 240 m from the ATLAS interaction point (IP) inside Roman Pots.
Approaches outgoing beams in vertical direction.
The main detector (MD) is build of 10 x 2 orthogonal
layers of scintillating fibers.

o The fiber width of 500 um and layer staggering gives
~2 30 um tracking resolution.

MAPMT

Fiber connectors
The overlap detectors (OD) also use scintillating
fibers and are used for detector alignment.

Trigger tiles of scintillating plastic cover MDs and
ODs.
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Elastic scattering and total cross section
measurement at /s =7 TeV



Total cross section - introduction

The total cross section in pp collisions can’t be calculated.

From the optical theorem we get:

> 167m(hc)? dog
U 402 dt =0

p is the ratio of the real and the imaginary elastic scattering amplitude at t = 0.

The Mandelstam t-variable is given by t ~ —(p8*).

The scattering angle is calculated from ALFA tracks:

uy\ _ (Myy My u* .
(o) = (e ) () om0

Data are taken in runs with special beam optics where

e B* =90 min orderto access small t-values since —tmin o< ’527

o we have vertical parallel-to-point focusing: 8} = 31—

The subtraction method is the nominal for the t-reconstruction:

* uap—Uuc
=
Miza+ M2 c

o Different methods to reconstruct t is available using other matrix element combinations.
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Elastic event selection

@ Elastic events are selected with tracks in all
four stations in an arm.

(237 m) C-Side [mm]

@ The tracks are also required to fulfill certain
correlations between inner-outer stations
and between A-side and C-side.
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@ Sources of irreducible background is:

1) two incident halo particle,

2) asingle diffractive proton and a halo particle,
3) double pomeron exchange with two protons in ALFA.

@ A t-spectrum for background is determined from anti-golden events by flipping the

coordinates of one of the tracks.

@ Background fraction is ~ 0.5% and halo+halo is the dominant source.
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Simulation: Acceptance & unfolding

@ The measured t-spectrum is affected by detector resolution
and acceptance and must be corrected for these effects.

@ PYTHIAS8 used as elastic scattering generator.

@ Beam transport from IP to ALFA done using MadX.
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@ Simulated tracks are used to find a reconstructed t. = _ B
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Beam optics corrections

@ The beam optics has direct influence on the t-reconstruction through the transport matrix.

@ The different t-reconstruction methods should give same answer but they don’t with
initial design optics.

@ Elastic data are used to constrain an optics fit whereby an effective optics in obtained.
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Theoretical prediction

@ The differential elastic cross section is a superposition of the strong interacting amplitude fy
and the Coulomb amplitude f¢ added in quadrature

dog 1
dt  16m
@ This gives the following fit function to the elastic data:

|t (t) + fo () ™02 .

doe  G*t) OtG(1) . | ~BJt
a \t\(z) BT O fsin(o(1)) + pcos(o(t)]-exp +6pt(1+p%) - exp(—Bt])
Simulation
Differential elastic cross section
2 %:1400;— - dcalastlc/d‘
G(t)= (m> Proton dipole form factor E::— _______ Coulomb term
B|t| s 800 Interference term
0(t) =—In <7> —¢c Coulomb phase N e Nuclear term
p=0.14 oot
o
A=0.71 GeV? e | .
¢C =0.577 o 10 1ﬁ;<pe)’[eev’]

Giot = 100 mb , B =18 GeV 2 ,p =0.13

Simon Stark Mortensen (NBI) Forward measurements with ALFA HESZ2015September 10, 2015 10/21



Differential elastic cross section

@ The t-spectra in the two arms are corrected for different effects and added together.
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@ The spectrum is fitted in I A IR A \
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@ The results including all statistical and systematical uncertainties are:
Ciot = 95.44+1.4 mb
B=19.73+0.24 GeV 2
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@ The dominant overall systematic uncertainty comes from luminosity.

@ Dominant t-dependent systematic uncertainty comes from beam energy.

@ The statistical uncertainty is small.

@ The extrapolation error is only AGi,t = 0.4 mb , AB = £0.17 GeV? and includes:
e variation of the fit range
o different theoretical models
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Results for the total cross section

@ The ALFA measurement gives Giot = 95.4+1.4 mb

@ ALFA provides the most precise measurement of the total cross section at /s = 7 TeV.

o Compared to TOTEM, we benefit from a more precise luminosity measurement.
@ The evolution of Gi(S) is described by COMPETE RRpl2u.

Comparison with other measurements

Energy evolution of Gipt
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Result for elastic and in-elastic cross section

@ The elastic cross section is found as the integrated nuclear differential cross section

o /t:wo 1+p° exp(—B|t|)dt =24.00 = 0.60 mb
= ———— -exp(— =24. .

o= Jimo %©er(nc)e P

@ The inelastic cross section is found as

Ginelastic = Otot — Oel = 71.344+0.90 mb

@ For both measurements, the uncertainties are substantially reduced, in particular wrt. the
ATLAS MinBias inelastic cross section.
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Outlook for elastic and total cross section measurements:

@ The analysis of data from /s = 8 TeV with same optics is ongoing.
o Data will be collected at /s = 13 TeV with same optics.

@ Data with a B* = 1 km optics at v/s = 8 TeV has been collected.
o The purpose is to observe the rise of the elastic cross section at small t due to CNI.
o A measurement of the p-parameter might be possible with enough CNI events.

@ Arun with B* & 2 km optics at v/s = 13 TeV is planned where a larger amount of CNI can
be obtained.

@ The Coulomb term can be calculated and thus gives a further constrain to the do/dt fit.
o This will give a luminosity independent measurement of o1t and provide luminosity calibration to

ATLAS.
Differential elastic cross section

- dcelasllc/dt

Coulomb term

do/dt [mb.GeV?]
8 . 38588888

Interference term
Reminder: —tmin o< o

ﬁ*

Nuclear term

il

10"
It=(po)’ [Gev?]
Simon Stark Mortensen (NBI)

Forward measurements with ALFA HESZ2015September 10, 2015 15/21



Diffractive prospects with ALFA



Diffractive prospects with ALFA+ATLAS (1)

@ Rapidity gaps are characteristic for diffractive processes.

@ ATLAS has measured rapidity gaps in —4.9 < m < 4.9 using the calorimeters.
o Deviations from both PYTHIA and PHOJET are observed.

@ ALFA has an acceptance of 8.5 < |n| < 10.5

@ Using ALFA+ATLAS data, the true rapidity gap in diffractive events between
the proton and the dissociated system can be measured.
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Diffractive prospects with ALFA+ATLAS (2)

@ ALFA can also provide kinematic information about diffractively scattered protons.

@ The transport matrix for diffractive events include also the energy of the proton.

@ The inversion is possible with ALFA tracks and a vertex in ATLAS.

@ The kinematic acceptance in ALFA depends on the optics but is rather good at B* = 90 m.
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s =14 TeV, B* = 90 m, beam 1
6c =0urad, d =6.9 mm
d r and LHC aperture cuts

100

o
N

@®
o

proton relative energy loss &
o
o
(2]
o
geometric acceptance [%]

LI B e L

0.1
40
0.05
= 20
0 (= B Y PR PR " O

0 1 2 3
proton transverse momentum p_ [GeV/c]
T [ATLAS-TDR-024]

Simon Stark Mortensen (NBI) Forward measurements with ALFA HESZ2015September 10, 2015 18/21



Diffractive prospects with ALFA+ATLAS (3)

Analyses with 7 and 8 TeV data are ongoing, e.g.
@ Central exclusive production (CEP): p+p—p+X+p

o Protons measured by ALFA, dissociated system by ATLAS.
e The anti-golden topology provides information about the elastic background sample.

@ Single diffraction: p+p—p+ X .
o Proton measured by ALFA, (part of) dissociated system by ATLAS.

Analyses with 13 TeV data:
@ Similar studies will be carried out with 13 TeV, B* = 90 m data.

@ Upgrade of trigger menu gives much more statistics for CEP processes.
o Data collected with ATLAS and LHCf at B* = 19 m allows:

e Combined analyses with e.g. measurement of t° spectrum in diffractive events.
o Measurement of dc/dt in single diffraction at another kinematic acceptance than with * =90 m.
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Conclusion

@ The most precise measurement of the total cross section at /s = 7 TeV has been
measured by the ALFA detector:

GOiot = 95.4+1.4mb.

@ ALFA has the possibility to perform a luminosity independent total cross section
measurement using data in the CNI region.
@ ALFA is able to track intact protons from diffractive collisions and thereby

e significantly extend the n-range of ATLAS for rapidity gap measurements.
e provide kinematic information about diffractively scattered protons.
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Thanks for your attention



Back Up



Back Up - Detector alignment

@ The ALFA detectors are aligned to the coordinate system of the beam:

o Distance between upper and lower detector is found using halo particles in ODs.
e Horizontal alignment and rotation of detectors are found using elastic events assuming isotropic
scattering in azimuth angle.
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Back Up - Results for the nuclear B-slope

@ ALFA measurement: | B = 19.7340.24 GeV 2

@ Pre-LHC expectations was a linear evolution of the B-slope with In(s)
@ LHC measurements of the B-slope favours a second In?(s) term.
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Back Up - t-reconstruction methods

@ Subtraction method:

o* ua—uc

=T U=Xy
Y Miga+ Mo’

@ Local angle method method:

0x4—6
y = XA TxC , 8} as for subtraction
Moo p+ Moo ¢

@ Local subtraction method:
41 237
M121,s “ X237,5 — M; %S " X241,

* _ * .
8 = LR T BT AL S=A,C, 6, as for subtraction
1,5 M2.s 1,5 M2.s

@ Lattice method:

0y =M, - x+ My, -6, 6 as for subtraction



Back Up - Fitting the t-spectrum: Profile method

The statistical covariance matriz accounting for correlations between t-bins after unfolding and
systematic uncertainties are included through nuisance parameters in a modified x? minimization:
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Back Up - Study of alternative models

@ Several models for the nuclear amplitude featuring a non-exponential behavior are tested.
@ All models come with more parameters and are intended to be extended to larger ¢.

1. Fit with Ct? term
~Otot _pi/o_ 2
fN(f) = (p_| ,)%e Bt/2—Ct* /2

2. Fit with \ﬁ term
() =(p+1) %Zt o Bt/2—0/2(\/4—t-21)

3. SVN model
t°t e Bnt/2 Gitot o Bit/2
t) = R
( ) +i— he
4. BP model
=1 (GP(t)VAe B2 + e*V/CeP112)
5. BSW model

R[fi(1)] =c1 (8 + t)e 2112
S[(1)] =ca(to + t)e 2112



