

The IceCube Collaboration

Clark Atlanta University **Drexel University** Georgia Institute of Technology Lawrence Berkeley National Laboratory Massachusetts Institute of Technology Michigan State University **Ohio State University** Pennsylvania State University South Dakota School of Mines & Technology Southern University and A&M College **Stony Brook University** University of Alabama University of Alaska Anchorage University of California, Berkeley University of California, Irvine University of Delaware University of Kansas University of Maryland University of Wisconsin-Madison University of Wisconsin-River Falls

Yale University

ICECUBE

5160 PMTs

1 km³ volume

86 strings

17 m vertical spacing

125 m string spacing

Completed **2010**

Main-stream analyses

CC Muon Neutrino

$$\nu_{\mu} + N \rightarrow \mu + X$$

track (data)

factor of ≈ 2 energy resolution < 1° angular resolution at high energies

Neutral Current / Electron Neutrino

$$\nu_{\rm e} + N \to {\rm e} + X$$

$$\nu_{\rm x} + N \to \nu_{\rm x} + X$$

cascade (data)

- ≈ ±15% deposited energy resolution
- ≈ 10° angular resolution (in IceCube) (at energies ≥ 100 TeV)

CC Tau Neutrino

(not observed yet: τ decay length is 50 m/PeV)

Another way of FD... we go below and 3D

IceTop

- 1 km² ice-Cherenkov
- 125 m spacing
- 2835 m a.s.l. 680 gcm⁻² 1000 gcm⁻²
- Coverage 3 x 10⁻⁴

KASCADE

- 0.04 km²
- 13 m spacing
- Coverage 1.5 x 10⁻²

$$Coverage = \frac{instrumented\ area}{total\ area}$$

- Angular resolution: ~1°
- Timing resolution: 3 ns
- Energy proxy S₁₂₅ in VEM (vertical equivalent muon)
- Energy calibration based on MC (mixedcomposition model H4a)
 - Energy resolution < 25%
 - Systematic uncertainty ~10%.

Muons detected per year:

- atmospheric* μ |7x10¹⁰
- atmospheric** v → μ
- $> 8x10^4$
- cosmic $v \rightarrow \mu$
- ~ 10

* ~ 3000 per second** 1 every 6 minutes

both Mass composition

IceTop Peripheral muons (1-10 GeV)

models)

Analyses of interest

High energy muons Muon bundle Prompt component Muon multiplicity and (hadronic interaction mass composition

High PT muons

both

Photon search

ICRC 2015 Sam DE RIDDER Tom FEUSELS Katherine RAWLINS Serap TILAV

Coincidence and mass composition (1/2)

- Signal at 125 m on the ground
- Zenith angle
- dE/dX at 1500 m (slant depth)
- The number of large stochastic energy losses at two threshold values

Coincidence and mass composition (2/2)

 $\log_{10}(E_{0,reco}): 7.0 - 7.1$

Hans DEMBINSKI: ICRC 267
Javier GONZALEZ

Peripheral muons (1/2)

Hans DEMBINSKI: ICRC 267 Javier GONZALEZ

Peripheral muons (2/2)

CORSIKA-Sibyll2.1-Fluka, and the HiRes-MIA result at a different slant depth of 860 g cm-2 (we are at 680 g cm⁻²).

arXiv: 1506.07981 (subm. to ApP)

Muon bundle and high energy muon

Energy Carried by Leading Muon

HE Muons Bundles

Patrick BERGHAUS

Muon energy distribution in the deep ice: Proton vs Fe

$$N_{\mu}(E > E_{\mu, \min}) = A \cdot \frac{E_0}{E_{\mu, \min} \cos \theta} \cdot \left(\frac{E_{\text{prim}}}{AE_{\mu}}\right)^{\alpha} \cdot \left(1 - \frac{AE_{\mu}}{E_{\text{prim}}}\right)^{\beta}$$
(see e.g. T.K. Gaisser: CR&Part.Phys.)

For fixed angle θ and ${\rm E}_{_{
m prim}}$ /A $\gg {\rm E}_{_{\mu}}$: $N_{\mu} \propto A^{1-lpha} \cdot E_{
m prim}^{lpha}$

Source	Type	Variation	Effect	Comment
Composition	uncorrelated	Fe, protons	variable	Residual bias near threshold
Energy Estimator	uncorrelated	4 discrete values	variable	Derived from data
Angular Acceptance	uncorrelated	3 zenith regions	±10% Flux Scaling	Estimated from data
Light Yield	correlated	±10%	±13% Energy Shift	Composite Scalar Factor
Ice Optical	correlated	10% Scattering, Absorption	±25% Flux Scaling	Global variations around default model
Hadronic Model	correlated	discrete	±10% Flux Scaling	EPOS/QGSJET/SIBYLL
Seasonal Variations	correlated	Summer vs. Winter	±5% Flux Scaling	Estimated from data
Muon Energy Loss	correlated	Theoretical uncertainty [69]	±1%	Official IceCube Value

Muon bundle

$$\sum E_{\mu} \propto N_{\mu} \propto E_{\mathrm{prim}}^{\alpha} \cdot A^{1-\alpha}$$

$$E_{\text{mult}} \equiv E_{\text{prim}} \cdot (A/56)^{\frac{1-\alpha}{\alpha}}$$

prompt: short-lived hadron $(c\tau \ll l_{int})$

$$\pi^{\pm} K^{\pm} \rightarrow \mu^{\pm} + \nu_{\mu}(\overline{\nu}_{\mu})$$
 (63.5% for K)
$$\downarrow e^{\pm} + \nu_{e}(\overline{\nu}_{e}) + \overline{\nu}_{\mu}(\nu_{\mu})$$

$$K^{\pm} \to \pi^0 e \nu_e$$
 (5%)

$$K_L^0 \to \pi e \nu_e$$
 (40%)

$$D,\Lambda_c o \ell +
u_\ell + \dots$$
 (order %) $K_S^0 o \pi e
u_e$ (Gaisser & Klein 2014) (0.07%) $\eta,\eta' o \mu^+\mu^-$ 'flavourless'

- Identify HE muons as tracks with exceptional stochastics losses
- 2. Reconstruct cascade energy
- Deduce most likely muon surface energy from simulation

L_{μ,surf} MC case, slant, zen

25

high energy muon

- High energy inclusive muon spectrum compatible with additional contribution at high energy
- Prompt component from charm production and unflavored η mesons

High PT Muons

Dennis SOLDIN: ICRC 256

Photon search, forward muon production etc...

The plot is for Auger energy but the physics is the same... we always have proton background and seems model-dependent

Future for IceCube: Gen2!

- 10 km³ in-ice array with 10 km² IceTop-like cosmic-ray array on top
 - Increase accessible cosmic-ray energy range by factor of 3
 - Increase coincident events by factor of 50 (due to increased zenith angle range)
- Surrounded by ~ 100 km² veto (less sophisticated air shower detectors)
 - Enable lateral muon distribution measurements on event-by-event basis.

we also have proposals such as air-Cherenkov telescopes, scintillator on surface, PINGU...

IceCube DOM

Gen2 D-Egg

CONCLUSION

IceCube has a broad science program for neutrino physics, particle physics, astrophysics and so on.

The combination of IceCube and IceTop analysis offers a unique chance to study EM component, low and high energy and high pt muons of air showers. So far most analyses based on SIBYLL, will be updated to use post-LHC models.

IceCube Gen2 is around the corner, more possibilities to do coincidence measurements for constraining hadronic interaction models.

BACKUP: WEATHER EFFECT AND CHARM COMPONENT

μ multiplicity - ICRC 2013

ICRC 2009 ICRC 2011

Takao KUWABARA

ICRC 2013

Backup

nucleon flux

GST - T. K. Gaisser, T. Stanev, and S. Tilav, arXiv: 1303.3565, (2013).

H3a - T. K. Gaisser, Astroparticle Physics 35, 801 (2012).

muon neutrino flux

TIG - M. Thunman, G. Ingelman, and P. Gondolo, Astroparticle Physics 5, 309 (1996).

poly-gonato - [1] J. R. Hörandel, Astroparticle Physics 19, 2 (2003)

Backup

Somewhat compatible with benchmark E⁻² astrophysical model or single power-law model, but looks like things are more complicated

Best fit assuming E⁻² (not a very good fit anymore):

0.84 ± 0.3 10⁻⁸ E⁻² GeV cm⁻² s⁻¹ sr⁻¹

Best fit spectral index: E^{-2.58}

Backup

