
cptnhook
A tool for scientific application run-time optimization

E. M. Asimakopoulou 1 D. Piparo 2 V. Innocente 2

August 2, 2015
1Department of Physics, Royal Institute of Technology, Stockholm, Sweden

2PH-SFT Division, CERN



What is it

A tool, implemented to instrument a scientific application
- applications for data analysis, reconstruction, simulation, etc -
with the goal of optimizing the application run-time.

cptnHook https://github.com/emyrto/cptnHook August 2, 2015 1 / 18



Motivation

Scientific applications have the pressing need of becoming less
resource-hungry. This includes their run-time too.

A current issue is the extensive use of very time-consuming
mathematical functions (such as transcendental functions), a result
of which is their accounting for a big portion of the programs’
run-time

cptnHook https://github.com/emyrto/cptnHook August 2, 2015 2 / 18



Solving the problem

One way to address this problem is to use ad hoc approximations of
mathematical functions (e.g. polynomial approximations, Pade’s
approximation).

To achieve this goal a clear overview of the usage of mathematical
functions in the program is required.

cptnHook https://github.com/emyrto/cptnHook August 2, 2015 3 / 18



… enter cptnHook

The tool hooks into functions’ arguments whenever they are used.
Thus providing an overview of the use of each function
(argument values, location of use).

This can later be used as input for improving the run-time of the
program.

cptnHook https://github.com/emyrto/cptnHook August 2, 2015 4 / 18



Example

Assume a mathematical function, sin(x).

During the process of a scientific application a variety of
mathematical functions are used, including sin(x).

Assume further that for the purposes of the analysis, sin(x) is used
in a specific range of values, ex. 0− π

2

cptnHook https://github.com/emyrto/cptnHook August 2, 2015 5 / 18



Example (cont.)

The usual approach for a program is to use reduction steps for the
calculation of the function→ quite costly

One way to improve this is to differentiate the used argument
ranges, in other words, re-optimizing the “chopping” of ranges for
the calculation of the functions.

cptnHook https://github.com/emyrto/cptnHook August 2, 2015 6 / 18



Example (cont.)

i.e.:
use a different mechanism for the calculation depending on the
frequency of use of an argument range (from a specific function call
location):

highly used values→ fast mechanism, (fast polynomials)
less frequent values→ slow mechanism

Note: Both ranges will have the same precision in their calculation

cptnHook https://github.com/emyrto/cptnHook August 2, 2015 7 / 18



Example (cont.)

For such a solution plan to exist a monitoring of the use of the
mathematical functions through out the application is required.

In this regard the present tool has been developed.

cptnHook https://github.com/emyrto/cptnHook August 2, 2015 8 / 18



Challenges

The main challenges for the development of such tool are twofold:

1. Instrumenting the program
Hooking into the program and getting the required arguments
without modifying the source

2. Identifying the location of each function call
Just knowing the argument of the function does not provide the
needed information.
It’s important to know the range of values of a specific function
from a certain location in the code, i.e. knowing the stack trace of
each called mathematical function.

cptnHook https://github.com/emyrto/cptnHook August 2, 2015 9 / 18



Overcoming the Challenges

Instrumentation

→ PIN 1

PIN: A Dynamic Binary
Instrumentation Tool

Instrumentation is performed at
run time on the compiled binary
files

1Pin: https://software.intel.com/en-us/articles/pin-a-dynamic-binary-
instrumentation-tool

cptnHook https://github.com/emyrto/cptnHook August 2, 2015 10 / 18

https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool


Overcoming the Challenges

Identification of function call

⋆ Pin: missing the ability to
associate call paths with
instructions as they execute.

→ Use of CCTLib 2

CCTLib
∙ call path collection library
∙ can be used from any Pin tool
to obtain full calling context at
any and every machine
instruction that executes

∙ associates any instruction with
source code along the call path
and also points to the data
object accessed by the
instruction if it is a memory
access.

1CCTLib: https://github.com/chabbimilind/cctlib
cptnHook https://github.com/emyrto/cptnHook August 2, 2015 11 / 18

https://github.com/chabbimilind/cctlib


Overcoming the Challenges

∙ Instrumentation −→

∙ Function call location −→

PIN⇒ get argument values

CCTLib⇒ get stack traces

cptnHook https://github.com/emyrto/cptnHook August 2, 2015 12 / 18



Output

The outputs of the tool are:

∙ the arguments values of the called functions
∙ the location of each argument call for each function (stack trace)

cptnHook https://github.com/emyrto/cptnHook August 2, 2015 13 / 18



Output

The results are given in ROOT
TFile format.

↪→ create TTrees for each function,
with branches containing:
∙ the values and
∙ the hashing of the respective
function’s stack trace.

↪→ make a vector containing the
mapping of stack traces and
hashes of the mathematical
functions.

Figure: Root TFile format.

cptnHook https://github.com/emyrto/cptnHook August 2, 2015 14 / 18



Using cptnHook

The tool is easy to use.
cptnHook can be downloaded from github:

https://github.com/emyrto/cptnHook
and it can be used in 3 simple steps:

1. Ensure ROOT is installed,
2. run ”getStarted.sh”→ installs PIN, compiles and creates the
”cptnHook.so” library

sh getStarted.sh

3. and use the tool to instrument an executable:

cptnHook.py -o myResults ./myExe

cptnHook https://github.com/emyrto/cptnHook August 2, 2015 15 / 18

https://github.com/emyrto/cptnHook


Future Work

The tool is available and ready to use, however it’s still in beta stage.

Further development will be focused on aspects like:

∙ covering both double and single precision,
∙ presentation of results in a much more user-friendly way:
↪→ present separate panels for each function, containing:
∙ list of stacks and
∙ the respective histogram of argument values.

∙ (provide the option of modifying the result of the function -reduce
it’s precision- in order to compare run-time results)

cptnHook https://github.com/emyrto/cptnHook August 2, 2015 16 / 18



Future Work

Figure: Presentation of results in later version of the tool.

cptnHook https://github.com/emyrto/cptnHook August 2, 2015 17 / 18



Summary

cptnHook

∙ tool that instruments scientific applications
∙ Goal: reduce run-time

How:

∙ monitor argument values and stack traces of the mathematical
functions in a scientific application (data analysis, reconstruction,
simulation, etc)

∙ provide overview of their use
∙ assist in implementing a more optimal mechanism in their
calculation

∙ reduce the time consumption of those calculations.

cptnHook https://github.com/emyrto/cptnHook August 2, 2015 18 / 18


