Title needs to be defined:

Collaborative Storage Clusters,
Federated Storage, Global
Namespaces and Metadata

Motivation

Expected Development of Storage

Computing models for the HL-LHC era anticipate a growth of storage needs of at least two
orders of magnitude. . At the same time, global collaborations are building experiments (for
example the SKA) which will produce comparable, or greater quantities of data on the same
timescale. Apart form the classical data intensive sciences such as HEP and Astronomy also
Biology produces in the future data on the same scale [EBI reference needed].

Data storage, management and preservation mandates long-term commitment beyond the
lifetime of a typical research project. In addition the reliable operation of large scale data
facilities show a clear economy of scale. CERN, as an example, has scaled up their storage
services over xx years by a factor of yyy without adding manpower resources. Observations
in the WLCG infrastructure also indicate that small facilities are more prone to availability
issues than large centres [ref ATLAS ops ].

Due to various reasons, such as latency considerations, data protection, network
accessibility and funding sources , a single storage facility is neither a realistic nor a
desirable option. In Europe and Asia the number of potential contributing centres is on the
order of 10-20. These established facilities will typically use different technologies to provide
storage to users and it is important that the contribution of the more than 100 small centres
can be integrated into a more coarsely clustered service seamlessly. Fig [1] shows a
potential scenario for a regional federation.

A distributed heterogeneous system of independent storage systems is difficult to be used
efficiently by user communities and couples the application level software stacks with the
provisioning technology at sites. Federating the data centres provides a logical
homogeneous and consistent reliable resource for the end users. At this scale it is a
necessity to be able to index and organize data by a multitude of metadata attributes. The
complexity and use cases vary widely between different science communities, but all are
using a subset of the technical metadata related to the namespaces of the underlying
storage systems. As a result an extensible metadata management system linked to the



namespaces is necessary to use the infrastructure efficiently. This system must allow,
similar to the Lambda architecture [Ref], the use of different technologies to cover data
analytics tasks with widely different requirements related to latency and complexity.

Our community has gained significant experience with managing storage, user namespaces
and metadata independently. While such an approach can be used, significant operational
overhead due to unavoidable inconsistencies between the loosely coupled systems require
frequent expert intervention. The complexity of maintaining consistency manually increases
with the number of managed files/objects and storage systems involved.

The global aggregation of participating storage services into a single logical system offers an
attractive approach to meeting this challenge. It would allow the maximum available storage
capacity to be integrated into the system, would match the international nature of the
collaborations involved, and would bring benefits such as redundancy and locality including
the ability to cluster regional storage more tightly. The system must be able to integrate
heterogeneous storage systems, in order to include the large number of sizeable
repositories already deployed. As the ensemble must appear to users as a single system, it
must offer a single namespace with predictable consistency characteristics with respect to
the storage, which today's approach of operating an independent catalogue cannot bring. A
similar level of deep integration with meta-data services must also be achieved to allow
successful navigation and discovery within what will be an exascale storage system. In
addition not all space owned by the different providers will be shared and the envisioned
system has to allow for Here we describe a system designed to meet these challenges and
in consequence provide a foundational multi-science storage solution.

Fig [xxx] illustrates the proposed architecture for a Virtual Storage Cloud based on
technology currently in use at CERN and several other sites. Placing, access and replication
policies can be defined at different level of the hierarchy.

Figure 1 Two regional storage clouds federating storage on a regional and global level.
The namespaces and policies are managed at local, regional and global level. Clients
support a multitude of protocols such as xrootd, HTTP(s) .

Figure 2 Showing a multi level VST network. The VST network is used to implement policies
at different levels and gather state information. XROOTD and HTTP based protocols allow
transparent redirection at the global, cloud and local level.

Figure 3 A potential implementation of a virtual storage cloud system using RadosFS to build
a scalable namespace. The system can be extended by adding further layers of hierarchy.
Note that at the leaf level storage services based on different technologies are integrated.

Global namespace and local storage consistency



Today's global data management systems, as used by the LHC experiments, typically
employ loosely coupled meta-data systems, replica catalogues (providing a logical
namespace), and storage services. While federation systems can be used to alleviate
potential inconsistencies between file catalogues and storage they don’t resolve the
underlying problem and do not alleviate “dark data”.

The proposed solution has more predictable consistency characteristics regarding the
catalogue and the storage. It allows the implementation of advanced placement logic while
preserving the autonomy of individual repositories and ensuring that the advantage of
locality is fully exploited.

Role of Metadata

The explosion of data also represents an explosion of metadata, with the volume of
metadata reaching levels currently seen for data itself. This will require new management
and query technology to be developed. To make the problem tractable, different types of
metadata can be handled in different ways, in order to adapt to their different characteristics.
[Can we talk about a framework?]

Metadata can be classified according to different criteria, in particular the provenance of the
data
storage systems
o information about the service itself, eg resource availability
o information about the data the service holds, eg accounting
§ In these cases, the metadata will be harvested from the participating
storage and presented through a single interface
applications and communities
o semantic tagging, access control
o information derived from the data itself

It is also important to distinguish between different uses of the metadata, with querying
patterns spanning a continuum from “real time” interrogation, synchronous with other
operations, to offline access for extended queries and analytics. It should be noted that in
some domains, final results are heavily dependent on analysis of the metatdata.

Concrete Use Cases



HEP use case

The LHC experiments currently manage catalogues which track, in some cases, upwards of
a billion files, and which are reaching their scalability limits. An architecturally innovative
solution to meet the expected increase in data rates is required, and should exploit this
necessarily disruptive opportunity to incorporate the lessons learned about integration with
metadata systems and participating repositories.

Non HEP use cases

Different scientific communities bring different requirements on data and metadata, so a
lower level service available to all must carefully choose the correct level of abstraction to
offer, upon which application specific functionality can be built. The solution described here
will allow incorporation of modular functionality, for example for offline metadata mining,
[data placement?] which can be optimised for particular applications.

Architectural Considerations

In a worldwide-distributed data management system such as the WLCG several
functionalities have been identified as crucial to achieve scalability and a well-defined split of
responsibilities between the different sub-systems and between the different contributing
partners involved in their operation:

Tree-structured organization of storage resources which allows for increased scalability
since each sub-tree can autonomously provide the scope of
o Data tracking to guarantee data safety through replication policies
o Accounting
o Monitoring
o Metadata queries
Awareness of the physical infrastructure to provide optimized data placement and access

An abstract storage interface to ease the integration of different existing storage solutions
as well is the evolution to future systems

Automated facilities to insure cross-component consistency and perform internal repair
tasks are needed to achieve good availability with reduced operational effort (reduced
human interventions)

A common authentication and authorization scheme including not only a syntactical
description of access control, but also the agreement on some (basic) semantic
meaning, which is shared across all implementation components.

In particular we propose an architecture in which each individual storage system represents
a leaf node in a data management tree. For example: several storage systems may be
aggregated by a “site node”. A group of site nodes can be aggregated via a cloud node.



Furthermore several clouds may be aggregated by a global node. The system should be
implemented in a way, that the tree height and the storage grouping of the management tree
is configurable. In the resulting setup the individual storage systems are autonomous leaf
nodes that store metadata and actual data while the intermediate and top-level nodes are
responsible for storing and maintaining aggregated meta-data information.

To further improve the scalability it is in addition desirable to organize also the user defined
data collections in a tree structure (hierarchical namespace). This does not exclude the
possibility to reduce the usage to eg the commonly used S3 container model (flat
namespace). While the natural entity for a leaf storage system is a file (or an object for
cloud/object storage), these do not have necessarily to be visible on a global scale in all
higher levels. Here the knowledge of a storage container (data collection/directory sub-tree),
its size and its replication policy is usually sufficient to implement higher level data
management functions. This container-based organisation of such a system would easily
allow to take advantage of the fact that most containers reach read-only status already after
a short period of active writing or modification.

Choice of Protocol for Data and Metadata
Access

We suggest focusing on XROOT and WebDAV over HTTPS as the protocols to handle
meta-data operations and to use XROOT and HTTP as the data transport protocols. The
PUT/POST semantics of the HTTP protocol fits well the proposed store (data upload) and
commit (meta data registration) semantics. To move data efficiently between storage
systems will require that a common peer-to-peer copy operation is implemented by all major
systems. Today gridFTP is a deployed standard in WLCG, XRootD is also widely used by
certain experiments (e.g. ALICE) as it supports a full-featured 3™ party copy, for
simplification HTTP should become the only transfer protocol required in the longer-term
future. One shortcoming in WebDAV is that there is no support for multi-part PUT requests,
which are needed to parallelize uploads or to resume uploads after transfer errors. The lack
of this operation could be compensated using a pull architecture in which a P2P transfer is
initiated close to the target storage system. The WAN access in this scenario is a
(resumeable) GET request and the LAN access executes the PUT.

Since P2P functionality is neither standardized nor implemented by commercial HTTP based
storage providers we would need to provide an HTTP proxy with P2P support to bridge
transfers for some of the commercial storage solutions.

Additional meta-data registration and query functionality can be implemented using a REST
API (tbd).

Metadata Service — Prototype
Implementations



HTTPS Front-End with Object-Storage Back-End

The main focus of the proposed metadata service is horizontal scalability. This means in
particular that the metadata service can be divided in a stateless server front-end and a
persistent metadata back-end. Additional front-end instances can be deployed to match eg
the expected number of client connections. As a back-end we propose to focus on eg the
RADOS object-store. RADOS allows configuring arbitrary reliability and scalability of OOPS
(object operations). The achievable OOPS are proportional to the number of object storage
daemons (OSDs) deployed. The latency per object operation is given by the media and
network latency. The use of flash-based storage media allows achieving latencies in the 0.1
JS range.

libradosfs

As part of an R&D project the CERN IT data & storage service group has developed
libradosfs.
libradosfs provides:

A hierarchical namespace implemented on top of the RADOS object storage scaling by
directories (can be optimized further by directory sharding)

Metadata API (extended attributes) per directory, directory entry and per file

A parallel query infrastructure for sub-tree meta-data queries using simple key-value
comparisons

File-system integrity check and recovery

A flexible user, group and tree quota accounting
libradosfs can be integrated into the front-end meta-data HTTPS servers exposing all
required meta-data functionality for the data management system. As HTTPS front-end we
propose the XRootD server in combination with an HTTPS protocol bridge plug-in or an
embedded HTTPS server like civetweb or libmicrohttpd.
A simpler, but less scalable implementation of a metadata store could be provided by any
storage system that provides extended attribute support. A small to medium sized data
management namespace can already be constructed using eg a ZFS file system
namespace and hence avoing the need for a more demanding RADOS deployment.

Consistency

In a system with multi-billion records the operation of a full resynchronization of meta-data
can only be seen as a last resort procedure in case of major system failures. During normal
operation each file movement, creation or deletion needs to first be reliably recorded (eg in
an intent log). These intent logs can then be processed asynchronously by active agents at
the different data management layers. These agents insure, that the information stays
consistent across levels and will if necessary apply corrections.

Item for further discussion:
Different consistency levels in one system (eventual and strong) to combine
the additional requirements from Massimo (Home-Directories Catalogue)



1.

ok wn

with the grid scale requirements (eg trading more scalability for
weaker/delayed consistency).

Prototyping

Russian T1s and T2s are collaborating closely and could profit from a clustered or federated
approach. These sites are especially suited for participating in a prototyping activity since
they plan a new deployment of resources with little history at scale.

CERN is in the process of clustering or federating several local storage services. This
includes services that require large namespaces for the use as home directories for the large
user communities and local projects. This prototype will allow a comparison with currently
used solutions in the identical environment.

Appendix

Home-Directories Catalogue (Massimo and Jan AUG-2015)

This is a description of the cataloging capabilities for a AFS replacement. On the short
(medium) term the present EOS catalogue is functionally adequate and there is enough
room to prepare the “full solution”. The time scale for the full solution is LS2 (2018).

Functional requirements

. The system should handle 1011 objects describing the files in the system

a. AFS handles 3 109 files (20% growth over the last 12 months; 35% over the

last 3 years)
The system should provide a namespace view of the system to support filesystem-access
The system should support extended attributes (cfr sys and usr attributes in EOS)
The system should have a quota system and accounting system (space and #objects)
The system should have ACL system which can be integrated with the CERN LDAP
infrastructure and the CERN Egroup system



Operational requirements

We assume the catalogue is instantiated in a scale-out architecture, like a “cluster” of boxes
using their memory and disk to hold and serve their information (catalogue metadata). The
“cluster” is self-consistent (e.g. provision for read-only or stand-by copies etc.).

. The impact of a single-box failure should (at most) result in some part of the namespace to
become “read-only” transiently

. Adding a single box should be possible by declaring the new node and (possibly) giving hints
to which part of the namespace information should be hosted (transparent intervention)
Removing a single box should be possible by (at most) issuing a “drain” command with a
few-hours latency (transparent intervention)

In case of a single-box failure, the namespace can be incomplete (like missing or orphaned
directories). In turn directory content should be consistent (all files/dirs present)

. The full system restart should not take more than 10 s (system completely down); no more
than 100 s with the system mainly in read-only mode); no more than 10,000 s in degraded
mode (catalogue consistency checks)

Quota and usage information should be retrieved in less then 100 s (main queries: list all
quotas; list all users with usage>90%quota; inconsistent entities)

. At 1011 objects the equivalent of a full find command should run at 10 kHz or better

Ideas for the architecture

A prototype of the catalogue has been developed in DSS. The main features are:
Extensible front-end of “stateless” gateways
o Caching part of the metadata information
o Implementing a hash-based segmentation of the name space (internal
redirection)
Common back-end (object store)
o Prototyped within DSSo

§ To be demonstrated at 1010 level (current implementation scales
with #directories)



