

- summary of luminosity optics and crossing parameters
- requirements during squeeze
- effect of gradient errors on beta-beat and closed orbit
- gradient transition during squeeze
- required actions for squeeze generation in operation
- time estimate for squeeze
- general comments and questions

possible scenario for commissioning the squeeze

Nominal LHC IR Parameters

LHC Design Report Volume I; CERN-2004-003; 4 June 2004

Insertion	proton – proton				ion – ion (Pb–Pb)			
	β*	φ	Δ	L	β*	φ	Δ	L
	[m]	[[mm]	$[cm^{-2}s^{-1}]$	[m]	[µ rad]	[mm]	[cm ⁻² s ⁻¹]
IR1	18.0	+/- 160 (V)	+/– 2.5 (H))				
	0.55	+/– 142.5 (V)	0.0	10 ³⁴				
IR2	10.0	+/- 240 (V)	+/- 2.0 (H)		0.5	+/- 0.0 (V)	0.0	10 ²⁷
	10.0	+/- 150 (V)	+/-0.18	10 ³⁰		+/- 80 (V)		
		(80)						
IR5	18.0	+/- 160 (H)	+/- 2.5 (V)					
	0.55	+/– 142.5 (H)	0.0	10 ³⁴				
IR8	10.0	+/- 300 (H)	+/- 2.0 (V)					
	1 / 35	+/- 75 (H)	0.0	10 ³²				
	(10)	+/- 200 (H)						

Injection Optics and Crossing Angle

[Stephane Fartoukh, 23. LTC 31. March 2004]

optics and crossing scheme at injection (Beam1 IR5):

 $\beta^* = 18 \text{ m in IR1/IR5} (V / H); \text{ angle} = +/-160 \mu \text{ rad}; \text{ separation} = +/-2.5 \text{ mm}$

Collision Optics and Crossing Angle

[Stephane Fartoukh, 23. LTC 31. March 2004] optics and crossing scheme at collision (Beam1 IR1):

 $\beta = 0.55$ m in IR1/IR5 (V / H); angle = +/- 142.5 µrad; separation = +/- 0.5mn

goal: maintain required minimum separation in common beam pipe

 \rightarrow separation larger than: 9.0 σ at injection

 6.9σ at collision

goal: maintain margins for mechanical aperture and collimation system

establish 'smooth' transitions for magnet powering:

avoid changes in the slope of the magnet ramp

avoid zero crossings and small gradients where possible:

delicate powering control near zero point

Tolerances during Squeeze

gradient errors during squeeze change optics & beam separation:

tolerances during squeeze:

(triplet and IR3 & IR7)

Δ Q < 0.01 (1/3 resonance)
21% β-beat
27% spurious normalized dispersion
3 mm closed orbit error inside triplet
< 1 σ relative closed orbit error for beam separation

requires excellent optics control during squeeze

→ squeeze one IP at a time? (lattice correctors & time)

orbit feedback during squeeze is desirable

Tolerances for Gradient Errors: β

 β beat during squeeze with insertion magnet gradient errors:

 $\longrightarrow \quad \frac{\Delta \beta(s)}{\beta_{\circ}} \quad <= \quad \frac{-\beta_{i}}{2 \cdot \sin(2\pi \cdot Q)} \cdot \Delta k_{1} \cdot 1$ triplet magnet parameter: $k_1 = 0.0085 \text{ m}^2$; $l = 2 \cdot 5.5$, 6.37 m; $\beta = 4500 \text{ m}$ insertion magnet Q4: $k_1 = 0.0050 \text{ m}^2$; l = 3.4 m; $\beta = 1500 \text{m}$ insertion magnet Q7: $k_1 = 0.0085 \text{ m}^{-2}$; l = 6.8 m; $\beta = 200 \text{m}$ assume: $\Delta k_1 = 10 \cdot 10^{-4} k_1 \longrightarrow \frac{\Delta \beta(s)}{\beta_0} <= 23\%; 1.2\%; 0.6\%$ $\rightarrow \frac{\Delta \beta(s)}{\beta_{o}} = 20\%$ for one Q2 magnet or 50 insertion magnets (rms – 3 σ)

Tolerances for Gradient Errors: Q

tune change during squeeze with insertion quadrupole gradient errors:

$$\longrightarrow \Delta Q = \frac{\beta_i}{4\pi} \cdot \Delta k_1 \cdot 1$$

triplet magnet parameter: $k_1 = 0.0085 \text{ m}^2$; $l = 2 \cdot 5.5$, $6.37 \text{ m}; \beta = 4500 \text{m}$ insertion magnet Q4: $k_1 = 0.0050 \text{ m}^2$; $l = 3.4 \text{ m}; \beta = 1500 \text{m}$ insertion magnet Q7: $k_1 = 0.0085 \text{ m}^2$; $l = 6.8 \text{ m}; \beta = 200 \text{m}$ assume: $\Delta k_1 = 10 \cdot 10^{-4} k_1 \longrightarrow \Delta Q = 0.033; 0.002; 0.001$

 \rightarrow $\Delta Q > 0.01$ for one Q2 magnet or 5 to 10 insertion magnets

Tolerances for Gradient Errors: CO

orbit change during squeeze with crossing angle and gradient errors:

$$\Delta \operatorname{CO} / \sigma = \frac{\sqrt{\beta_i / \varepsilon_n}}{2 \cdot \sin(\pi \cdot Q)} \cdot \Delta z \cdot \Delta k_1 \quad 1; z = x, y$$

assume:
$$\Delta k_1 = 10 \cdot 10^{-4} k_1$$

triplet magnet parameter: $\Delta z = 7 \text{ mm} \longrightarrow \Delta CO = 1 \sigma$ insertion magnet Q4: $\Delta z = 2 \text{ mm} \longrightarrow \Delta CO = 0.3 \sigma$

insertion magnet Q7: $\Delta z < 0.5 \text{ mm} \longrightarrow \Delta CO = 0.01\sigma$

triplet and Q4 gradients are relevant for orbit control!

β –beat for 10 units triplet error left in IR5:

Tolerances for Gradient Errors: triplet left IP5

CO for 10 units triplet error left in IR5:

Tolerances for Gradient Errors: triplet left IP5

horizontal dispersion for 10 units triplet error left in IR5:

Collimation During the Squeeze

the collimator jaws define a shadow for the cold aperture:

- \rightarrow primary collimator jaws at 7 (6) σ ; [n₁]
- \rightarrow secondary collimators at 8.4 (7.2) σ
- \longrightarrow cold bore protection up to 9.8 σ (radially) / 8.4 σ (h/v)
 - radiation damping: σ (450 GeV) = 4• σ (7 TeV)
 - \rightarrow collimator jaw opening must change at top energy for same n₁
 - → collimators must move before squeeze

I constant collimator opening is possible if $n_1 (7 \text{ TeV}) = 4 \cdot n_1 (450 \text{ GeV})$ —— no crossing angle and $\beta^* > 5$ meter!

Optics During Squeeze in IR1 & IR5

[Stephane Fartoukh at 23. LTC; 31. March 2004]

[Stephane Fartoukh at 23. LTC; 31. March 2004]

 \rightarrow squeeze potentially challenging for $\beta^* < 1$ m

[Stephane Fartoukh at 23. LTC; 31. March 2004]

Beam1:

Beam2:

[Stephane Fartoukh at 23. LTC; 31. March 2004] Beam2:

Beam1:

zero crossings for the corrector circuits can not be avoided!

[Oliver Bruning at 23. LTC; 31. March 2004]

17-21.1.2005; Chamonix 2005

[Oliver Bruning at 23. LTC; 31. March 2004]

17-21.1.2005; Chamonix 2005

[Oliver Bruning at 23. LTC; 31. March 2004]

17-21.1.2005; Chamonix 2005

[Oliver Bruning at 23. LTC; 31. March 2004]

17-21.1.2005; Chamonix 2005

downloading of functions for the collimator jaw motors

- → what needs to be measured during the adjustment?
- → can we 'just' reduce the insertion settings by a given fraction?
- downloading of functions for the insertion region and lattice corrector circuit power converters
 - power converter ramp round off at transition points
 corresponds to a ´stop´ and ´re–start´ of the ramp

→ time and magnetic field quality?

online monitoring of key parameters (tune and closed orbit and β)

online correction of key parameters -> feedback for tune + closed orbit

maximum power converter ramp rates: 10 A / sec for corrector quadrupole circuits > 2 min for full swing 10 A / sec for main 4kA quadrupole circuits 5 A / sec for main quadrupole circuits near 500A maximum power converter ranges during squeeze: 4.5 K circuits (Q6 IR1 & IR5): 75% of nominal \rightarrow 5% of nominal 1.8 K circuits (Q7 IR1 & IR7): 50% of nominal \rightarrow 100% of nominal \rightarrow 1.8K: 5 min for 50% -> 100%; 4.5 K: 4 min for 70% -> 30% 4.5 K: 3.5 min for 30% -> 5% 5 A / sec near 500A → 5.0 min for β^* > 1m + 3.5 min for β^* = 1m -> 0.55m = 8.5 min / IP -> plus additional time for ramp round off and collimator adjustments!

Chamonix 2003

D1 transfer function and triplet alignment have strong effect on closed orbit:

- \rightarrow 10 units TF in warm D1 changes closed orbit in triplet by 3 σ (4 mm)
- \rightarrow 10µm alignment error in Q2 changes CO by 1 σ (1.2mm in triplet)

verify triplet quadrupole alignment (orbit + coupling)

verify D1 / D2 transfer functions and roll error

correct linear field errors
 (orbit + coupling)

k-modulation and special alignment optics (at 7 TeV!)

IR BPM Systems

BPM's in IR1 and IR5:

BPM's in IR2 and IR8:

Triplet Powering

nested power and trim power converter

possibility for different powering in Q1/Q3 and Q2

possibility for measuring beta function by modulation of Q1

the triplet field error correction is only relevant for $\beta^* < 0.7$ m

phase advance between triplet left and right = π -> local CO feedback?

β^{*}-knob for independent adjustments in Beam 1 and Beam 2 [Walter Wittmer]

what is the reproducibility of the TF for 5% powering at top energy?

how many matched intermediat steps are required?

available beam instrumentation and feedback loops?
 total time for squeeze with smooth transitions and jaw adjustments?

One Scenario for Squeeze Commissioning

squeeze first one IP at a time without crossing angle:

- → separate D1 TF error from triplet alignment errors
- ---- establish matched intermediate solutions & minimize beta-beat
 - implement collimator movement for intermediate solutions
- squeeze one IP at a time with crossing angle:
 - correct closed orbit for each intermediate solution
- \longrightarrow implement and verify triplet corrector setting ($\beta^* < 0.7 \text{ m}$)

implement closed orbit feedback during transitions

minimize the number of intermediate solutions: time!

→ feedback loops and partial squeeze during ramp?

establish parallel squeeze in more than one IP: time!