Open Access aspects at the CERN Document Server

Alberto Pepe and Tibor Simko

1 June 2005

Welcome to CERN!

In its 50 years of activity, CERN has been in the frontline in the field of particle physics...

- world's largest particle physics centre (20 member states, 3000 employees, 6500 visiting scientists)
- world's largest particle accelerator
- Nobel prize winners and laureates

but also...

- invention of the World Wide Web in 1989
- inspiration for best-selling fiction books!

CERN's scholarly output

Research in particle physics and related areas results in:

- 2000 scientific publications per year (OA1)
- 10000 conference talks and contributions per year (OA2)
- TONS of experimental data (OA3)

The fundamental conCERN at CERN is:

- long-term preservation
- dissemination

Large and increasing amount of produced scholarly material

- need for interoperable institutional repositories
- → the arsenals of knowledge!

CERN Document Server: A bit of history

- pre-1993 paper dissemination of preprints by the CERN Library
- 1993 CERN Preprint Server on the web
 - institutional repository
 - two collections: CERN preprints, SCAN series
- **1996** CERN Web Library
 - adding books, periodicals, and other library objects
- 1999 CERN Agenda
 - sister application for conferences, meetings and workshops
- 2000 CERN Document Server
 - adding multimedia material (photos, posters, brochures, videos)

CERN Document Server in 2005

Integrated Digital Library: (OA1)

- articles, preprints, books, photos, videos, exhibition objects...
- 800,000 documents
- 60,000 new acquisitions per year (about 1500 direct author submissions)
- 500 collections

Integrated Digital Conference: (OA2)

- conference talks, workshop presentations, meeting minutes...
- 90,000 documents
- 10,000 new acquisitions per year
- 15,000 events

Integrated Digital Library Software

- configurable portal-like interfaces for hosting various kind of collections
- powerful search engine with Google-like syntax
- extensible metadata representation (MARC XML) to handle virtually any kind of document
- flexible document type submission and approbation workflow
- user personalization, including document baskets and email alerts
- I18N, search interface available in 14 languages
- compliant to Open Archive Initiative protocol for metadata harvesting
- co-developed with EPFL, Lausanne
- free software (GNU GPL)

Integrated Digital Conference Software

- handles various kinds of events (lectures, meetings, conferences)
- covers full organizational cycle from registration to creation of proceedings
- user-customized views
- fine access control mechanism
- multiple outputs (HTML, XML, PDF, iCAL, OAI)
- EU project InDiCo (2001-2004)
- free software (GNU GPL)

CDSware: from data acquisition to delivery (OA1)

CDS Metadata Provider: OAI gateway (OA1)

- all CERN-produced documents exposed through the OAI-PMH
- about 40,000 records available
- about 30,000 harvesting requests per month in 2004 (only 5,000 in 2003!)
- metadata formats oai_dc, marcxml
- need to improve recognition of papers by locally available ranking methods:
 - ranking by number of citations
 - ranking by downloads and by downloaders
 - ... and even ranking by journal impact factors
- exporting of enriched external records.. added-value by:
 - (i) CERN Library (e.g. conference information)
 - (ii) automatic processing (e.g. keywords and citations)

CDS Service Provider: Automated Metadata Harvesting (OA1)

- about 60,000 new acquisitions harvested per year
- at present, CDS harvests metadata from more than 100 sources:
 - only about 2-3 sources are OAI-compliant(!)
 - ... but the most important source is (arXiv.org, about 70% of import volume traffic)
- current harvesting mechanism relies on arXiv.org email submission system
 - richer metadata content
 - ... but non-OAI
- need richer metadata format, current oai_dc is very spartan
- need more OAI-compliant data sources

Example of Automated Metadata Harvesting (OA1)

%0 Journal Article

```
sample input data
                                                                                                                                                   %A Adamowicz, L.
                                                                                                                                                   %A Kurtz, J.
                                                                                                                                                   %D 1989
### BibConvert template: sample data -> xmlmarc data
                                                                                                                                                   %T Theoretical studies of C5 with first-order correlation orbitals
                                                                                                                                                   %B Chem. Phys. Lett.
=== data extraction configuration template ===
                                                                                                                                                   %V 162
    IN---%0 ---MAX-----
                                                                                                                                                   %P 342-348
    AU---%A ---MAX---;---
                                                                                                                                                   %! Theoretical studies of C5 with first-order correlation orbitals
    TI---%T ---MAX-----
    SU---%B ---MAX-----
    YR---%D ---MAX-----
    IM---%8 ---MAX-----
    PRv---%V ---MAX-----
    PRc---%P ---MAX-----
    NO---%! ---MAX-----
                                                                                                                                                                          conversion template
    F---%F ---MAX-----
=== data source configuration template ===
    IN---<:IN:>
    AU---<: AU:>
    TI---<:TI:>
    SU---<:SU:>
    YR---<: YR:>
    IM---<: IM:>
    PRv---<: PRv: >
    PRc---<:PRc:>
    NO---<:NO:>
=== data target configuration template ===
    HEAD::DEFP()---<record>
    TI::CONF(TI.:0)---<datafield tag="245" ind1="" ind2=""><subfield code="a"><:TI::TI::SUP(SPACE. ):></subfield></datafield>
    YR::CONF(YR..0)---<datafield tag="909" ind1="C" ind2="0"><subfield code="v"><:YR::YR:></subfield></datafield>
    SU::CONF(KW,,0)---<datafield tag="650" ind1="1" ind2="7"><subfield code=""><:IN::IN:> - <:SU::>CONF(KW,,0)---<datafield></datafield>
    AU::CONF(AU,,0)---<datafield tag="700" ind1="" ind2=""><subfield code="a"><:AU*::AU:></subfield></datafield>
                 <collection>
                                                                                                                                                                                                                           xmlmarc output data
                 <record>
    IM.p::
                 <datafield tag="245" ind1="" ind2=""><subfield code="a">Theoretical studies of C5 with first-order correlation orbitals and the couple-
                ield></datafield>
                 <datafield tag="909" ind1="C" ind2="0"><subfield code="y">1989</subfield></datafield>
                 <datafield tag="700" ind1="" ind2=""><subfield code="a">Adamowicz, L.</subfield></datafield>
                 <datafield tag="700" ind1="" ind2=""><subfield code="a">Kurtz, J.</subfield></datafield>
                 <datafield tag="909" ind1="C" ind2="4"><subfield code="v">162</subfield><subfield code="v">1989</subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield><subfield>
                 <datafield tag="500" ind1="" ind2=""><subfield code="a">Theoretical studies of C5 with first-order correlation orbitals and the couple.
                 ield></datafield>
                 <datafield tag="980" ind1="" ind2=""><subfield code="a">Journal Article</subfield></datafield>
```


Conferencing: Enforce institutional self-archiving (OA2)

Ongoing goal: ensuring Open Access to conference material presented by CERN authors:

- ensure fast dissemination of conference contributions through OAI
- encourage paper submission within the CERN administrative procedures for travel request
- promote the use of OAI-compliant conference management software

JISC 2004 and 2005 self-archiving survey:

- most researches don't self-archive and won't, unless required by employer
- when required, 81% will comply willingly, 14% reluctantly, 5% not at all
- good, but...

Sharing Raw Research Data (OA3)

- "archives containing hundreds or thousands of terabytes of data will be affordable and necessary for archiving scientific and engineering information"
- LHC will produce huge amounts of raw experimental data
- current technology is fine to provide OA to relatively large collections of documents, but..
- need a widely accepted, solid, reliable infrastructure to allow global collaboration
- active successful projects in Astrophysics (Virtual Observatory) and Chemistry (Comb-e-Chem)
- in particle physics? CERN is paving the road for a common infrastructure to allow data and resource sharing on a global scale... the Grid!

Conclusions

- CDS: more than 10 years of experience in handling digital documents
- CDS Software for Open Access
 - CDSware: Integrated Digital Library
 - InDiCo: Integrated Digital Conference
- need for detailed metadata description (MARC)
- need for interoperability "beyond" OAI
- need for fast dissemination of conference contribution
- actively promote institutional self-archiving
- Open Access to data?