
DISTRIBUTING SOFTWARE APPLICATIONS BASED ON RUNTIME
ENVIRONMENT

N. Ratnikova
�
, R. Darwish, D. Evans, FNAL

N. Darmenov, CERN, T. Wildish, Princeton

Abstract

Packaging and distribution of experiment-specific soft-
ware becomes a complicated task when the number of ver-
sions and external dependencies increases. In order to run
a single application, it is often enough to create appro-
priate runtime environment that ensures availability of re-
quired shared objects and data files. The idea of distribut-
ing software applications based on runtime environment
is employed by Distribution After Release (DAR) tool.
DAR allows to automatically replicate application’s run-
time environment based on the reference software instal-
lation. Assuming that software is relocatable, applications
can be packaged into a completely self-consistent ”DAR-
ball” and executed on any system, which is binary com-
patible with the reference software installation. Such light-
weight distributions can be used on opportunistic GRID re-
sources to avoid excessive efforts of complete installation
of experiment-specific software. For over three years, DAR
tool has been successfully used by CMS for Monte-Carlo
mass production, helping physicists to get results faster. In
version 2, DAR was completely redesigned, optimized, and
enriched by the new features, ready to meet future chal-
lenges. The paper presents general concept of the tool and
new features available in DAR-2.

INTRODUCTION

State of the art

Software development and deployment in a large sci-
entific collaboration has become more complex and more
challenging task in the era of distributed computing. The
High Energy Physics experiment specific software is char-
acterized by a large number of interdependent software
components and rapid development cycle, especially in the
early phases of the experiment. Data intensive applica-
tions require enormous CPU resources for the computa-
tional tasks, and sophisticated storage systems for storing
and maintaining the data, and making them available to
users.

One of the ways to cope with the large-scale computa-
tional problems is to utilize available GRID [2] resources
and technologies. In the GRID environment computa-
tional tasks are represented as jobs that can be sent to vari-
ous computing sites depending on available CPU resources
and/or required data.

�
natasha@fnal.gov

It is the goal of the software distribution process to pro-
vide software availability on the remote execution sites.

Regardless of the implementation techniques, the soft-
ware distribution process includes the following steps:

� Packaging
� Transfer
� Installation
� Publishing

The packaging step usually includes creation of the archive
to be transferred to the execution site, and the installation
instructions. The installation step includes unpacking, local
configuration, and some verification procedure.

It is often convenient to have verification as a separate
step, as it could then be repeated later as needed without
re-installing the software.

Concept

An important requirement of distributed computing is
that application software must be relocatable.

Most common way to handle relocatable software is to
set the environment variable that tells the application where
to look for required files. Examples are standard UNIX
variables such as

��� ���	��

��
�� �
�����
variable that tells the

loader where to look for shared libraries,
�
���������
�������

that
defines search path for Python modules,

�������
that defines

search path for executables. Many other variables are being
used to specify the locations of required data, configuration
files, plug-ins, and so forth.

In CMS [1] the entire runtime environment for the soft-
ware applications is generated by SCRAM, Software Con-
figuration, Release, And Management tool [3]. The soft-
ware configuration assures that the runtime environment is
set in a way that all required files can be found at the exe-
cution time.

In a nutshell the idea of distributing software applica-
tions based on the runtime environment is the following:
all files associated with the application runtime environ-
ment are being packaged, and then deployed in a new loca-
tion. The same environment variables are then set to point
to the new locations. A well-designed and truly relocatable
application will run in a new environment exactly as if in
the original one.

Similarly, the application runtime environment can be
deployed on another node with the same, or compatible
operating system. The operating system compatibility here
means that the same application will run on both systems,
and produce the same result.



Described approach allows to package and deploy all
necessary files and reproduce exactly the same runtime en-
vironment for the software application on the target site.
Essential point here is that the object of the distribution
is a self-contained application. This is different from the
conventional generic approach of reproducing the com-
plete software development, when multiple software com-
ponents are distributed in a modular way [4].

There is no need to compile any parts of code on the
remote site. The public applications and user-specific ap-
plication are handled in the same way.

There is no need to deal with the internal dependencies
between the products used in the application: all these is-
sues are being already resolved by the time when the run-
time environment is defined.

The runtime environment based distributions are usually
more compact, since they to not need to include the whole
development environment, and the variety of versions.

The abstraction from development environment details
makes the runtime environment based distributions very ro-
bust.

TOOL DESCRIPTION

DAR is a software tool that implements the concept of
distributing applications based on runtime environment.
Using a simple configuration file and command line op-
tions user can automatically package and install software
applications on the execution host. To gather informa-
tion about the runtime environment of the application DAR
uses SCRAM. Based on this information DAR generates a
DARball file, that can be used to recreate the same runtime
environment on the machine where the application needs
to be executed. This allows developers and users to trust
that their application sent for execution on the GRID, will
run identically on remote machines, and exhibit the same
behavior as it does when run locally.

Packaging

Packaging of the application is done in one command.
User provides the specification file with the runtime envi-
ronment variables settings plus additional optional direc-
tives (see Fine Tuning). For applications developed within
SCRAM managed projects it is sufficient to provide the
project top development area as an argument. DAR will
automatically generate the specification file using built-in
��� 
�����������


interface, and proceed with packaging. DAR
will analyze the request contained in the specification file,
create a list of file system objects associated with the values
of the environment variables, taking into account additional
directives. The resulting files are included into archive
along with additional information saved as meta data Upon
successful completion DAR informs the user about the lo-
cations of the DARball, respective log files, and installation
instructions.

Installation

Installation of a DARball is done in one command. User
must specify two arguments: the DARball, and the instal-
lation directory. DAR will unpack the distribution and cre-
ate the runtime environment setup scripts. Upon successful
completion DAR will print out instructions on how to set
the application runtime environment.

The DARball

The DARball is essentially a compressed archive of files.
It contains files associated with the runtime environment:
shared libraries, executables, and other data files, and dis-
tribution meta data.

The internal structure of distribution represents both the
runtime environment and the file system with preserved rel-
ative locations of the directories and files as in the original
reference installation on the packaging site.

The meta data are stored in a separate directory. They
include:
� application information, such as project name, release

name, application name, etc .
� configuration information, such as versions of used

external tools for SCRAM managed projects, archi-
tecture identifier.

� specification file used for DARball creation
� packaging details: starting time, creation time, host

name, user name, DAR version used for packaging,
log files

� installation size
� bill of materials with md5sum checklist
� templates for runtime environment setup scripts

All the contents are stored under the architecture specific
directory.

Incremental DARballs

This is a new option implemented in DAR2 provided to
create an incremental distribution based on existing DAR-
ball. The resulting incremental DARball is organized in the
same way as described above, and contains complete infor-
mation about the application runtime environment, but the
files that are common with the base DARball are replaced
by a reference to the corresponding files in the installation
base. Two files are considered to be common if they have
identical relative path, name, and md5sum. All references
in the incremental DARballs are pre-generated in advance.
This is done to insure the robust behavior during the instal-
lation.

The installation of the incremental DARball never mod-
ifies the base installation. It only re-uses already installed
structure.

The md5sum check of the incremental installation can be
done at any time to insure that all references are still valid.

The use of incremental DAR installations is rational
when two applications have many common files. For ex-
ample user specific application usually heavily re-use the



public code. Or for executing slightly modified applica-
tions, when most of required files stay unchanged.

Incremental installation help to save disk space, while
providing the same functionality as the traditional DARball
installations.

Fine Tuning

By default DAR only uses the runtime environment in-
formation to create the distribution. In some cases user may
know nuances about his application, that allow to reduce
the distribution size. DAR provides a number of smart op-
tions to control the contents of the distribution.
� exclude files or directories matching specified pat-

terns, for example : lib*.a , *.pyc, *.tgz, *.PDF, CVS
� preserve files matching a specific pattern. These files

will not be replaced by reference, or excluded. They
will be included.

� ignore all files referred to via a given environment
variable: these files will not be included into the dis-
tribution, unless they are referred to by another envi-
ronment variable.

Extra Features

Additional DAR features include
� built-it help information system.
� verbosity control.
� test mode for packaging step to quickly validate the

new environment without copying all the files
� print out application information contained in DAR-

ball without doing the actual installation
� API (in Python) for interoperability or re-use within

other tools
� produces the log files, including the time log for track-

ing the performance.
� support for multiple architectures
� platform independence

USE

DARballs are light-weight distributions and can be used
for quick and easy software deployment anywhere where
the software does not need to be rebuilt. They are espe-
cially useful on opportunistic GRID resources, as they al-
low to avoid excessive efforts to install complete software
development environment.

DAR has been successfully used for four years in CMS
for worldwide distributed Monte Carlo data production [5],
[6].

Other uses include running demo applications, running
analysis jobs in batch mode, benchmarking [7], and plat-
form compatibility tests.

SUMMARY

The concept of distributing software based on runtime
environment proved to work well for extended period of

time, and has been adopted for use in various projects [5],
[6], [7], [8], [9] .

DAR tool that implements this concept is very robust and
easy in use. New version DAR2 re-implemented in Python
provided new features, better performance and improved
interoperability with other tools.

Incremental distributions, and smart options facilitate
optimal use of the resources. Object-oriented design and
provided API allow for easy extensions and re-use .

ACKNOWLEDGEMENTS

We would like to thank the CMS Production team, CMS
Grid sites, and all other DAR users for valuable feedback.

REFERENCES

[1] Compact Muon Solenoid Collaboration
http://cmsdoc.cern.ch/cms/outreach/html

[2] LHC Computing GRID
http://lcg.web.cern.ch/lcg/

[3] SCRAM
http://cmsdoc.cern.ch/Releases/SCRAM/doc/scramhomepage.html

[4] A. Nowack, et al. CMS Software Packaging and Distribution
Tools.

[5] CMS Production
http://cmsdoc.cern.ch/cms/production/www/html/general

[6] N.Ratnikova, A. Afaq, G. Graham, T. Wildish, V. Lefebure.
Software Packaging with DAR. NIMA 534:110-114,2004

[7] H. Wenzel, M. Furukawa. Benchmarking AMD64 and
EMT64, CHEP06
http://home.fnal.gov/ wenzel/Benchmarking

[8] N. Ratnikova, A.Sciaba, S.Wynhoff: Distributing Applica-
tions in Distributed Environment. NIMA 502: 458-460, 2003

[9] N. Ratnikova, G.Graham: CMS Software Distribution and
Installation Systems:Concepts, Practical Solutions and Expe-
rience at Fermilab as a CMS Tier 1 Center. CHEP01, Beijing,
Sept, 2001.


