The LCG based mass production framework of the H1 Experiment

Ch. Wissing*, Universitdt Dortmund, Germany
M. Karbach, Universitidt Dortmund, Germany
M. Vorobiev, ITEP Moscow, Russia

Abstract

The H1 Experiment at HERA records electron-proton
collisions provided by beam crossings of a frequency of
10 MHz. The increased event rates after the luminosity
upgrade of the HERA accelerator at DESY led to a more
demanding usage of computing and storage resources. The
analysis of those events also requires an increased amount
of Monte Carlo events. In order to exploit the new neces-
sary resources, which are becoming available via the Grid,
the H1 collaboration has therefore started to install a mass
production system based on LCG.

The H1 mass production system utilizes Perl and Python
scripts on top of the LCG tools to steer and monitor
the productions. Jobs and their status are recorded in a
MySQL database. During autonomous production a dae-
mon lunches appropriate scripts while a web interface can
be used for manual intervention. Additional effort has been
put into the sandbox environment in which the executable
runs on the worker node to ensure a stable unattended pro-
cessing.

The system has proved to be able to track several hun-
dred jobs allowing for production rates of up to 20 mil-
lion events per week. Beginning of 2006 H1 has access
to nearly 3000 CPUs contributed by 15 sites from seven
countries.

INTRODUCTION

The H1 Experiment is running at the electron proton col-
lider HERAII at DESY with beam energies of 27.5 GeV
and 920 GeV, respectively. The collider was upgraded in
the years 2001/2002 in order to provide an increased lu-
minosity. The integrated luminosity delivered in the year
2005 has achieved the same amount as the complete run-
ning period from HERAI (1994 to 2000). The luminosity
to be provided in the remaining operation time of HERA is
expected to exceed the delivered one.

The H1 Experiment [1],[2] is a general purpose detector
with about half a million readout channels to observe the
electron proton scatterings. The basic parameters for the
multi-level trigger system and the data acquisition system
are driven by the beam crossing frequency of 10 MHz, the
typical rate of beam induced background of about 10 kHz
and the actual rate of physics events, which is about 1 kHz.
The data logging facility of the online reconstruction farm
[3] writes data with a frequency of up to 25 Hz and typical
event sizes of 100 kB. While these are stored on tapes a

* wissing @physik.uni-dortmund.de

compressed subset of the event containing important quan-
tities for analysis is kept permanently on disk to allow for
fast access.

In addition to the raising event rates due to the improved
performance of the HERAII collider the amount of Monte
Carlo (MC) events is increasing continuously. As the un-
derstanding of the detector has become better over the years
and more advanced algorithms are being used in the event
reconstruction the absolute processing time for simulated
events has grown although faster CPUs became available.

The MC production has been performed on few selected
sites with sizable computing resources, including RAL and
other British H1-institutes, Dortmund and the central H1-
farm at DESY. These farms are running conventional batch
system like PBS and are operated individually either lo-
cally or remote by a production manager.

In order to allocate more computing resources for Hl
using the Grid for mass productions is the natural choice.
As all institutes involved in H1 are also participating in an
LHC experiment they contribute computing resources via
LCG.

H1 GRID PRODUCTION SYSTEM

The H1 Grid based production system is organized in
several independent modules. The modules communicate
with each other via a MySQL database, which has a special
state field implemented. This approach allows an indepen-
dent development of any module. There is no need to use
a particular programming language as long as the commu-
nication to the database can be established. Presently the
modules are written in Perl and Python.

The database is organized as follows. In addition to a
few global settings of the system entries are add on bases
of production requests, which are usually MC productions.
Since a production gets distributed over sometimes up to
thousands of jobs, that need to be tracked, all enter the
database with a link to the request they belong to. With
each job several quantities are stored, e.g. files belonging
to it, job description files (JDL file) and the important field
for the state mentioned before.

Since a job might need a resubmission before it succeeds
another level of jobs, so called LCG-jobs, are recorded in
the database. These entries are created during the actual
submission and have additional information attached like
time of submission and the site the job was processed.

h1mc job
submitter
Perl

h1mc job
maker
Python & Shell

h1mc job
update module
Perl

Database

h1mc state
MySQL
DST receiver
Perl

[OSB checker
Perl

Figure 1: Modules of the H1 Grid Batch System.

OSB receiver
Perl

Modules of the System

The first modules that runs for a production request is
the JobMaker. It prepares all necessary files needed later
on. For a typical MC request files, which contain the gen-
erated events to be put through the detector simulation, get
split into junks of 10,000 to 20,000 events. Jdl files and
configuration files are created for all jobs. All these jobs
are marked with the state new.

Next module is the JobSubitter which acts only on jobs
with state new or failed in order to submit or resubmit them.
If there are resources available at one or more sites an LCG-
job is created and added to the database while the state field
changes to running.

An JobUpdate module continuously asks for the status
the LCG-jobs which should go from “ scheduled” to “run-
ning” to “done”. The database is always updated with the
most recent status.

To collect the output sandboxes (OSB) the OSBreceiver
module gets started for all jobs that reached the status
“done”. All files found in the OSB are stored in a par-
ticular place in the directory structure and are made known
to the database. The state field in the database changes to
received.

To determine the success of a job the OSBchecker mod-
ules parses certain logfiles. Depending on the result the
state field is changed to succeeded or failed. In case of to
many submission attempts or failures that are likely to hap-
pen also in a further resubmission the state can be put to
broken indication that extra effort has to made.

For the present MC production an additional DSTre-
ceiver modules puts the data to same mass storage area
where the results of all other MC productions are stored.
Since the DESY d-Cache mass storage system has been
equipped with ab SRM interface [5] the final step of the
production is basicaly a file replication. For further analy-
sis the Grid produced events can be accessed as before.

For an unattended running a daemon calls all modules
in steerable time intervals. Via a command line interface
the daemon can be influenced e.g. to process additional
requests or exclude certain modules from the calling se-
quence.

Another important part of the production system is the
environment in which the job runs on the remote process-
ing node. Since there are usually no possibilities to login
failures have to be recovered autonomously as efficient as
possible. Effort was put into a reliable scheme that ensures
a correct transfer of all data by implementing checksums.
These checksums are stored as attributes in the file cata-
logue.

Experiences from past MC productions have shown that
due to bugs in the application the MC program sometimes
gets stuck in endless loops or crashes completely. Never-
theless it turned out that events that were processed up to
one that caused the trouble could be used. If the produc-
tion is relaunched one event before the critical one in most
cases the production can continue. In order to detect the
described malfunctioning the production executable runs
parallel to a watch-dog process, which check certain log-
files being updated. In cases where the program crashed or
was hanging the production is reconfigured to start again
from point of failure. Finally it is made sure that the partly
processed events are merged together properly.

Web Interface

The production framework is equipped with a web in-
terface that offers various possibilities for manual interfer-
ence, inspection of job quantities. It also includes a moni-
toring.

For manual interference via the web interface the same
modules are called as by the daemon. The only difference
might be some parameters that ensure to act on one or more
particular jobs selected by the user.

The monitoring part generates pages that display all jobs
of a request including their states. More detailed informa-
tion on particular jobs are easily accessed by Hyperlinks. A
system based on the widely used RRD tool [6] collects sev-
eral parameters and completes the monitoring by creating
performance plots out of them.

Implementation

The general implementation concept introduces an inter-
face layer between the application and the actual grid mid-
dleware such that the application can stay unchanged even
if the middleware gets modified.

The approach follows very much the one used for the
ZEUS-Grid-toolkit [4]. The actual middleware commands
for file transmission and job handling a placed into wrapper
PERL classes, which have a defined interface and usually
an enhanced functionality over the pure middleware com-
mand line tools. These enhancements are forced timeouts,
a configurable number of retries and additional crosschecks
for the success of a command.

On the application level generic objects are created and
used. The interface layer determines the used middleware
and creates specific objects accordingly. For new versions
of the middleware additional code has to be provided only
for the interface layer.

PRODUCTION EXPERIENCES

The described system is installed on a special UserInter-
face machine running at DESY giving access to H1 mass
storage system by conventional methods. All core services
like management for virtual organization hone, file cata-
logue and the resource broker are provided by the DESY
Grid infrastructure [7].

The basic functionality of the system is available since
mid of 2005. Quite some experiences could be gained al-
ready during production leading to further improvements
over the months.

Observed Difficulties

Most critical part of the production turned out to be the
data transfer to the worker nodes. For the HI MC pro-
duction quite some files in addition to the generated events
have to be copied. The executable with some suppling li-
braries is available on each Storage Element (SE) of the
sites. The biggest amount of data are the so called noise
files for various subdetectors, which sum up to two Giga-
bytes. Furthermore a files with a size of about 100MB con-
tains calibration constants and the detector geometry. Each
job creates about 400MB of output data. Table 1 summa-
rizes the files and their sizes.

Table 1: Typical sizes of files involved in a MC job.

File Size
Executable+Libraries | 20 MB
Input events 50 MB
Noise files 2 GB
Constants files 100 MB
Processed events 400 MB

Figure 2 shows the efficiency of single data transfers as
it has been observed over the last months. A noticeable
fraction of sometimes 80% and more of the transfer actions
fail because the transfer command run into a timeout or a
mismatch of checksums was detected. Since the framework
has included retry mechanisms most failures are recovered
automatically and the job comes to a successful end.

In the more recent past the situation has improved. Most
relevant for that are the improved capabilities of the lcg-
commands in LCG release 2_6_0, which have also some
retry mechanism included. Furthermore it is taken care that
the big noise files are available at each site.

In some situations jobs end without success due to er-
rors during data transfer. These situations typically occur
at certain points in time. Often it could be correlated with
problems in the central services, e.g. the file catalogue.

Figure 3 shows how often a job had to submitted before
it succeed. About 25% of all jobs get submitted more than
once but finally terminate correctly. The failed jobs are
observed to be victims of mis-configured sites or problems

g Fraction of Jobs
o - -
21 00 | J_H l:l with lcg-cp/lcg-cr errors
g B 1 1 - which could not recover
8 a0l
Q 807
60— J
40—
20— I g
olL I ‘ - Wl
Jun Jul Aug Sep Oct Nov Dec

Figure 2: Data transfer efficiencies using lcg-commands.

of individual compute nodes. A fraction of jobs of a few
per mill finally needs some manual interference.

Overall Performance

Since mid of 2005 H1 MCs can be produced in the Grid
in addition to the existing approaches. Over this time pe-
riod several LCG sites enabled the support for the HI ex-
periment. Among them are two big TIER-1 centers in the
UK and in France, rather big TIER-2 centers mainly in the
UK but also several medium and small sites, that also pro-
vide a sizable contribution. The total number of CPUs adds
up to about 3.000.

Figure 4 shows the integrated event production since
middle of 2005. Since then about 120 million MC events
have been processed on the Grid. End of 2005 a production

(7)) F
O N
59000}
58000}
Z 7000}
6000}
5000}
4000}
3000}
2000}
1000}

3 m4 m5 m6 78
Submissions

o 1 2

Figure 3: Number of submission until a job succeeds.

rate of about 20 million events per week were achieved dur-
ing a stress test. This numbers have to be compared with
total MC production in 2005 using the classical approach
of about 450 million events. It is expected that the fraction
of Grid produced MC events will raise with time since in-
stitutes are going to install further resources within LCG.
This has the further advantage that the central computing
farm of H1, that sometimes is heavyly loaded by MC pro-
duction , has more capabilities for user applications, which
in present analysis farm works depend on this environment.

200.0 Mio

180.0 Mio

160.0 Mio

140.0 Mio

120.0 Mio

L

100.0 Mio

80.0 Mio [

60.0 Mio

\

\

40.0 Mio

processed events until date

\

20.0 Mio

\

10.08.2005 -

0.0 Mio

25.06.2005

18.07.2005

02.09.2005 |
25.08.2005 -
18.10.2005
09.11.2005
02.12.2005
2512.2005}
17.01.2006 -

08.02.2006 L

Figure 4: Overall production of H1 MonteCarlo events us-
ing the Grid.

BEYOND MC PRODUCTION

As the production framework was developed to serve the
needs of any mass production use cases beyond MC simu-
lation are under study. One frequently used application is
the creation of analysis trees within the new object oriented
analysis environment H10O [8] based on ROOT. During a
conversion process event properties from the DSTs, which
are stored in an H1 specific format, get filled in to class ob-
jects. This kind of conversion is done for every major re-
lease of the HIOO software, typically twice a year. Since
all available real data plus requested MC sets get processed
the resource requirements are sizable. Thus a distributed
production over the grid could be an option.

The use pattern of this application is different from MC
simulation, where mainly CPU usage counts, while here a
fast and reliable network connection to send the DSTs and
the trees is crucial. Nevertheless first test indicate that sites
with a fast link to DESY can be used.

In contrast to MC production software for the analysis
tree creation depends on a complete installation of the H1
software including H1OO and almost all FORTRAN pack-
ages. Since there is no batch enabled installation method
available the work presently focuses on providing these
features in order to allow a deployment in the VO direc-
tories at the LGC sites.

ACKNOWLEDGMENTS

The authors want to thank the experienced MC and soft-
ware experts of the H1 collaboration for providing the nec-
essary insides and support to build this framework. In par-
ticular we want to thank Alan Campbell and Cristi Diaconu
for their special interest in this project and their help to pre-
pare this contribution. We thank the DESY-IT stuff that
is continuously developing the Grid infrastructure and ser-
vices at DESY always with the aim to serve our needs in the
best possible manner. The project is funded by the German
Bundesministerium fiir Bildung und Forschung.

REFERENCES

[1] I. Abt et al., “The H1 detector at HERA,” Nucl. Instrum.
Meth., vol. A386, pp. 310-337, 1997.

[2] ——, “The tracking, calorimeter and muon detectors of the
H1 experiment at HERA,” Nucl. Instrum. Meth., vol. A386,
pp- 348-396, 1997.

[3] A.Campbell, S. Levonian, M. Vorobiev, “The High Level Fil-
ter of the H1 Experiment at HERA ,” Proceedings of the
CHEPO4 conference, Interlaken, Switzerland.

[4] K. Wrona et al. “ZEUS Grid Toolkit”, Proceedings of the
CHEP 06 conference, Mumbai, India

[5] T. Perelmutov, “Enabling Grid features in dCache”, Proceed-
ings of the CHEP 06 conference, Mumbai, India

[6] T. Oetiker, “RDDtool”,
http://people.ee.ethz.ch/detiker/webtools/rrdtool/

[71 A. Gellrich et al. “DESY Grid infrastructure”, Proceedings
of the CHEP 06 conference, Mumbai, India

[8] J. Katzy et al. “H10O - an analysis framework for H1,”, Pro-
ceedings of the CHEPO4 conference, Interlaken, Switzerland.

