
DIAL: DISTRIBUTED INTERACTIVE ANALYSIS OF LARGE DATASETS

D. L. Adams, T. Maeno, Brookhaven National Laboratory, Upton, NY 11973, USA
K. Harrison, University of Cambridge, Cambridge, UK

G. Rybkine, Royal Holloway College, University of London, Egham, UK
D. Liko, CERN, Geneva, Switzerland

Abstract
This document describes the status of the DIAL[1]

(Distributed Interactive Analysis of Large datasets)
project. We describe the software that is presently
available, the deployment of the system for ATLAS[2],
and results obtained using that deployment.

INTRODUCTION
The goals of DIAL remain as described in the first

DIAL paper presented at CHEP03[3]: demonstrate the
feasibility of interactive analysis of large datasets, set
corresponding requirements for grid tools and services,
and provide ATLAS a useful distributed analysis
environment. By interactive, we do not mean that the user
interacts directly with processes running on remote
machines, but instead that the system responds promptly,
i.e. within a few minutes, to user requests.

The final result is available on this time scale or, if the
job is inherently long running or sufficient computing
resources are not available, the user can easily monitor
progress. In the latter case, the user should have access to
partial results and be able to abort the job and free up
resources for use by others or to process an amended
request.

For large input datasets, this responsiveness is obtained
by breaking the dataset up into subdatasets and processing
those in parallel. DIAL carries out the splitting of the
input dataset and merging of the results so that the user
needs to make very little extra effort to harness this
distributed processing. Of course, some packaging of the
user software is required for remote and/or distributed
processing, and so DIAL provides a job definition
framework to describe user transformations and datasets.

The C++ and XML specifications of these objects are
known as AJDL (Abstract Job Definition Language) and
are generic, i.e. not specific to a particular type of data or
transformation so that a single DIAL processing system
can accommodate requests from different users including
those working on different projects.

In the following sections, we describe this framework
and the services that DIAL provides to carry out the
processing, the monitoring of these services, and the
catalogs used to record datasets, transformations and jobs.
We describe the system that has been deployed for use in
ATLAS and present some performance measurements.

Software
DIAL is mostly written in C++ and the standard

distribution kit includes the libraries, executables and
header files. The distribution also includes ROOT[4]

dictionaries and scripts so most of the DIAL functionality
is available at the ROOT command line. A dial shell
provides access from a bash command line. The latest
release, DIAL 1.30, is built using RedHat[5] Enterprise 3
Linux and is validated on variants of Scientific Linux[6].

A python[7] binding has been created for previous
releases and is planned for 1.30. It is packaged separately.

The distribution includes a web service based on
gsoap[8] with a GSI plugin[9] allowing authentication
and authorization using globus[10] grid proxies. Modules
allow this service to be deployed for the purposes
described below. Associated client classes facilitate
interaction with the services.

All persistent objects have an XML representation that
is used to store the objects and for exchange between
clients and services.

MODEL
DIAL presents a data-oriented view. By definition, a

job carries out a transformation on a dataset to produce
another dataset. The output dataset is often called the
result. A user performing data analysis defines a job and
then submits it to a scheduler that has responsibility for
carrying out the transformation and making the result
available to the caller. When deployed as a web service,
the scheduler is often called an analysis service. We
expand on these definitions in the following sections.

Datasets
A dataset is a specification of a collection of data along

with some information about the content and organization
of the data. Typically a dataset does not carry the actual
data but instead holds the location of the data, most often
as a list of logical or physical file names.

The content of a dataset is a description of the nature of
the included data. The content is organized as a collection
of content blocks, each of which has a label and optional
lists of content identifiers and event identifiers. The
content label and identifiers can provide users or
schedulers with information about the suitability of a
particular transformation and to identify the parts of a
dataset that are irrelevant to a particular transformation
and hence need not be staged for processing.

Datasets are hierarchical, i.e. a dataset may include a
list of subdatasets. This structure may arise naturally
during construction, as when merging the results for
subjobs. Or it may be imposed to provide users or
schedulers with hints for splitting or selecting relevant
parts of a dataset.

DIAL provides an abstract class Dataset that defines
the interface for datasets including access to the above
information and means to split and merge. An abstract
subclass GenericDataset adds sufficient data to hold the
information and provides means for conversion to and
from an XML representation. Concrete dataset classes
(full types) are required to inherit from the former and
typically inherit from the latter, i.e. they adopt its
persistent representation. In this case it is possible for a
generic scheduler, i.e. one without knowledge of the full
type, to manipulate objects of the concrete type, albeit
with restricted functionality.

Transformations
Transformations have two components: the application

that carries out the processing and the task that carries
data used to configure the application. Processing is
carried out in two steps: first the application builds the
task and then the input dataset is processed. In the
(typical) case of distributed processing, the task is built
once (or once for each site or platform) and then each
subjob is processed independently using the common task
build. If a subsequent job is submitted with the same
transformation (i.e. same application and task) and
another dataset, the existing task build may be reused.

A task is a collection of named files and each
application defines a task interface that specifies the
required and allowed names and the nature of the files.
The task interface is not yet formalized and so that a
scheduler has no means to validate a transformation other
than building the task.

An application carries two scripts: build_task is used
for building and run is used for processing. The build
script is run in a directory containing the task files and is
expected to write the results of the build into that same
directory. A job is run in a job directory holding the
location of the built task (a directory name in the file
taskdir) and the input dataset (dataset.xml). Either script
must return 0 to be considered successful. The run script
must also create a file named result.xml containing the
output dataset.

Both scripts may expect to be run in a minimal
environment that includes the usual posix commands, the
GNU C++ compiler and pkgmgr[11]. The latter provides
an interface for locating other software including DIAL
itself.

DIAL defines classes Application and Task that carry
the relevant files and provide means for streaming to and
from XML.

Job preferences
In addition to the transformation and dataset, a job

specification includes job preferences expressed a
collection of name-value pairs. These may affect how the
processing is carried out but, other than possibly causing
a job to fail, should not affect the essence of the result.
Results from two jobs run with the same transformation
and dataset but different preferences should be equivalent.
Examples of sensible preferences are naming conventions

for output files, number of subjobs and desired response
time.

DIAL provides a class JobPreferences to hold the
data and provide streaming to and from XML.

Jobs
Users and schedulers can submit jobs, monitor their

progress and interact with them through the interface
defined in the class Job. Subclasses provide the means to
interact (submit, monitor and kill) with jobs in different
batch or workload management systems. In particular,
DIAL provides LsfJob to interact with LSF[12] and
CondorJob and CondorCodJob to interact with
Condor[13] either locally or using Condor-G. Users
wishing to make use of other systems can avoid
introducing new classes by making use of ScriptedJob
that calls a user-supplied script to submit, update and kill
jobs. This mechanism has been used to submit jobs to
globus gatekeepers and to PANDA[14], the U.S. ATLAS
production and analysis system.

The Job class is concrete and provides the persistent
representation for all jobs and means to stream to and
from XML. In the typical case where a user interacts with
a remote scheduler, this is the only visible part of the job
and the user must interact with a scheduler to submit, kill
or fetch the updated status of a job.

 Schedulers
Users normally submit, monitor and kill jobs using a

scheduler whose interface is specified in the abstract class
Scheduler. At present there are two categories of
schedulers: a local scheduler constructs jobs of a
particular type using a job creator, and a master scheduler
carries out distributed processing using a local scheduler
to manage its subjobs. In addition, a client scheduler
enables a user to access a scheduler run from a remote
web service.

The master scheduler splits the input dataset, creates a
subjob for each subdataset and then merges the results
from each subjob. The merged result is typically available
shortly after the first subjob completes and is then
regularly updated as more results come in.

The local scheduler creates job directories on a disk
shared with the worker nodes and the jobs are run in those
directories. In those cases where the processing is remote
from the scheduler, e.g. globus, Condor-G or PANDA,
the submitted script makes use of the DIAL command
dial_run_job which fetches the job description from the
analysis service and then runs the job script. Just before
termination, these remote jobs tar their run directory and
store the resulting archive file in the local storage element
for retrieval by the scheduler.

Catalogs
DIAL provides two categories of catalogs: repositories,

where objects of the above types (datasets, applications,
tasks and jobs) are stored, and selection catalogs, where
metadata including a name is associated with selected
objects. Upon creation, all objects are assigned unique

64-bit identifiers that are used in persistent references.
Objects in repositories are indexed with this identifier and
also include a modification time. Except for jobs which
have not reached a terminal state, all objects in
repositories are immutable making it easy and safe for
objects to reside in multiple repositories, e.g. at different
sites.

Objects in selection catalogs are indexed by name. Job
submission clients typically allow the application, task
and dataset to be specified by either name or identifier.
Thus a user may use a name to reference the latest version
of an object assuming the catalog is updated according to
that policy. A user who want to ensure that he or she
always get the same object can specify the object by
identifier.

DIAL provides MySQL[15] implementations of
repositories and selection catalogs and also provides a
file-based implementation for repositories. Authorization
for MySQL depends on file-resident passwords.

There are repository and selection catalog modules for
the DIAL web service and clients for these services have
the corresponding catalog interface. In the present
deployment all catalogs reside in MySQL and the services
access the catalogs using that interface. Client access is
provided through web services and requires a globus
proxy certificate. Write or update access requires that the
owner associated with the object or catalog entry match
that associated with the certificate.

USER INTERFACE
All the classes described above are available within

C++ and most are also available at the ROOT command
line. The latter is the most common way to use DIAL.
The interface includes commands to facilitate job
submission and retrieval of results with immediate
viewing of ROOT histograms and ntuples.

DIAL also provides a command to set up a DIAL
environment, e.g. for use inside of applications. It also
provides means to start up a DIAL shell, a bash shell with
the dial environment. Within this environment, there are
commands to construct, retrieve and examine datasets,
applications, task and preferences. It is also possible to
submit a job.

DIAL web services provide web-based monitors. From
any browser a user may view the current list of jobs for an
analysis service and examine the properties for each
including their lists of subjobs and the properties of those
subjobs. One can examine the application, task, dataset,
preferences and result associated with any job.

ATLAS DEPLOYMENT
DIAL has been deployed and used for analysis at BNL,

the ATLAS tier 1 site in the U.S. The deployment includes
analysis and other services, datasets describing data from
recent Monte Carlo production, applications for common
analysis scenarios, and example tasks for those
applications. The DIAL release includes demos for each
of the ATLAS applications.

Analysis services
 Services at BNL include a unique ID provider, a

repository, a selection catalog and a suite of analysis
services connected to different processing systems. At
present, the best performance is obtained from analysis
services that directly access local batch systems. There is
a service for each of three effective queues: fast, short and
long. For the list of services and up-to-date
recommendations on which to use, please see the
“ATLAS services” link on the DIAL home page[1].

The fast service is generally the only user of a tuned
LSF queue and users can expect jobs to start almost
immediately after submission. The dual-CPU worker
nodes are typically already running two other jobs and the
queue should only be used for very short-running (15
minute) jobs with small memory footprints (100 MB).

The short service makes use of a preemptive Condor
queue that will borrow a slot from a machine with a long-
running Condor job. Memory is less of an issue but jobs
should be short-running (1 hour). There is an inherent
Condor latency of 5-10 minutes before jobs will start but
there are generally at least a few slots available.

The long service also makes use of Condor preemption
but at lower priority and the jobs are subject to
preemption by higher priority jobs, e.g. those in the short
queue. Long running jobs (1 day) are allowed. Latency
depends on usage of the facility and varies dramatically.

At the time of writing the PANDA service had latencies
of a few minutes and was only running a few analysis
jobs at a time. It is expected this will improve.

There are also Condor-G and globus gatekeeper
services that run intermittently at BNL. At present these
use the BNL gatekeepers to connect the same queues
described above. They offer no gain in performance but
demonstrate the feasibility of connecting to remote sites.

Datasets
The AOD (analysis oriented data) data from the last

year’s Monte Carlo production (Rome data) is available in
the form of DIAL datasets. A new production (CSC) has
just begun and it is planned that all event data from that
production will promptly be made available for analysis
with the DIAL services. Preliminary samples produced in
the U.S. and few replicated ones are already available.

Transformations
In addition to the generic applications scriptrunner and

cxxrunner that respectively run scripts and C++ programs,
four ATLAS-specific applications are available. All make
use of the ATLAS framework program Athena. The
application atlasopt simply runs a job with user-supplied
job options (input parameters). Aodhisto allows users to
additionally provide code to be built inside the standard
ATLAS example analysis package. Most popular is
atlasdev which allows a user to make arbitrary changes to
the release and run with those changes provided as a
tarball. Finally, atlasxform can be used to run the standard
transformations used in official data production.

0

600

1200

1800

2400

3000

3600

0 200 400 600 800 1000 1200

Ti
m

e
(s

ec
)

single job

(single job)/10

100 MB/s

50 MB/s

10k events

local fast

local short

Condor-G fast

PANDA

10k ev/subjob

5k ev/subjob

k ev/subjob
F

We construc
performance of
physics AOD s
a total of 1872 f
25 GB giving a
this dataset we
varying sizes w
of each file. The

The atlasdev
analysis task t
(truth, electrons
dozen histogra
reference datas
corresponding
measurement o
half of the latter
other containers

Figure 1 show
of the number
solid points, th
events) and th
from 10 to 113
squares), loca
submission to
(violet circles).
queue, results w
events—are sh
triangles, respec

Best results
queue. One m
about 15 times
a single job. Th
and Condor-G
Thousands of events 2
igure 1: DIAL processing time as a function of the number of events. See text for details.
PERFORMANCE
ted a reference dataset for assessing the
 the system by combining many of the new
amples available at BNL. This dataset has
iles each with 100 events. The total size is

n average of 130 kB per event. The files in
re then copied locally and datasets of
ere created by including up to six copies
 files reside on two NFS file servers.
 transformation was used with a simple
hat opens four containers in each event
, cone jets and jet tags) and fills a couple
ms. Without parallel processing, the

et can be processed in about 130 minutes
to 43 ms/event or 3.0 MB/s. Rough

f the actual data transfer rates gives about
 value presumably because there are many
 (e.g. tracks) that are not being opened.
s the DIAL processing time as a function

of events for various schedulers. For the
e subjob size was fixed at 100 files (10k
e number of subjobs varies accordingly
. Results are shown for local fast (green
l short (blue triangles), Condor-G
local fast (red diamonds) and PANDA
 For smaller datasets and the local fast
ith varying subjob size—100, 50 and 20
own in open squares, diamonds and
tively.
are obtained with the local fast (LSF)
illion events require about 23 minutes,
faster than the almost 6 hours required for
ere is speedup of a factor of 10 for Condor
 and a factor of five for panda. The

connection to PANDA and PANDA itself are relatively
new and we expect significant improvement there.

Direct globus submission was not evaluated because
these numbers of jobs put a high load on the gatekeepers
that are also used by the production system. Condor-G
also uses these gatekeepers but we avoid this problem by
using the Condor grid monitor[13].

ACKNOWLEDGEMENTS
The authors gratefully acknowledge support from the

BNL ATLAS tier 1 facilities group, many useful
comments from members of the ATLAS distributed
analysis effort and feedback from the ATLAS physicists
who have served as early adopters.

We also acknowledge support from the U.S. DOE
through USATLAS and PPDG, PPARC via GridPP and
CERN.

REFERENCES
[1] http://www.usatlas.bnl.gov/~dladams/dial.
[2] http://www.cern.ch/ATLAS.
[3] http://chep2004.web.cern.ch/chep2004.
[4] http://root.cern.ch.
[5] http://www.redhat.com.
[6] https://www.scientificlinux.org.
[7] http.//www.python.org.
[8] http://www.cs.fsu.edu/~engelen/soap.html.
[9] http://sara.unile.it/~cafaro/gsi-plugin.html.
[10] http://www.globus.org.
[11] http://www.pp.rhul.ac.uk/~rybkine/pkgmgr.
[12] http://www.platform.com.
[13] http://www/cs.wisc.edu/condor.
[14] http://uimon.cern.ch/twiki/bin/view/Atlas/Panda.
[15] http://www.mysql.com.

Last updated March 9, 2006.

	DIAL: DISTRIBUTED INTERACTIVE ANALYSIS OF LARGE DATASETS
	INTRODUCTION
	Software

	MODEL
	Datasets
	Transformations
	Job preferences
	Jobs
	Schedulers
	Catalogs

	USER INTERFACE
	ATLAS DEPLOYMENT
	Analysis services
	Datasets
	Transformations

	PERFORMANCE
	ACKNOWLEDGEMENTS
	REFERENCES

