CbmRoot: Simulation and Analysis framework for CBM Experiment

M. Al-Turany, D. Bertini and I. Koenig
GSI Darmstadt, Germany

Abstract

The Compressed Baryonic Matter (CBM) is an experi-
ment at the future FAIR (Facility for Antiproton and Ion
Research) in Darmstadt. The goal of the experiment is to
explore the phase diagram of strongly interacting matter
in high-energy nucleus-nucleus collisions. For simulation
the Virtual Monte Carlo concept was choosed [1], this con-
cept allows performing simulations using Geant3, Geant4
or Fluka without changing the user code or geometry de-
scription. The same framework is then used for the data
analysis. An Oracle database with a build-in versioning
management is used to efficiently store the detector geom-
etry, materials and parameters.

DESIGN AND IMPLEMENTATION

The schematic design of the CBM framework (Cbm-
Root) is shown in Fig.[1].

Root files
MCPoints, Hits,
Digits, Tracks

Run Manager

Geolnterface
RunTime

-Module DataBase
Magnetic Primary
Field Generator

Figure 1: Schematic design of the CBM simulation and
analysis framework

In this design, the framework is fully based on the
ROOT system [2].The user can create simulated data and/or
perform analysis with the same framework. Moreover,
Geant3, Geant4 and Fluka transport engines are supported,
however the user code that creates simulated data do not
depend on a particular monte carlo engine.

BASIC FUNCTIONALITIES

The framework delivers base classes which enable the
users to construct their detectors and /or analysis tasks in a

simple way, it also delivers some general functionality like
track visualization (see Fig.[2]). Moreover an interface for
reading magnetic field maps is also implemented. in the
following a general description of the software is presented,
for further technical details please see the home page of the
CBM collaboration [3].

N )
Elle Edit Miew Options |nspect Classes

AnitnateTrack
Draw

Print

Delete
DrawClass
DrawClone
Dump

Inspect
SetDrawOption
SetlineAttributes
SetMarkeratiributes

Figure 2: Track visualization

Input/Output procedures

The storage of all information collected by the different
sensitive detectors is done on an event by event basis (an
event means in this context one interaction between one
beam particle and the target) . All persistent objects are
serialized and stored into binary ROOT files. An interface
class (CbmMCPoint ) is provided to define the structure
of registered hit in a detector. Each detector can then pro-
vide a more specific implementation following the CbmM-
CPoint API. All registered hits will be collected into ded-
icated lists, one list corresponding to one detector entity.
The ROOT class TTree is used to organize the output data
into a “ntuple like” data structure . In the analysis case, the
CbmRootManager provides methods to read this informa-
tion. A partial input/ouput mechanism is also supported.

Parameters definition

In order to analyze the simulated data, several nu-
merical parameters are needed, as for example, calibra-
tion/digitization parameters or geometry positions of detec-
tors. One common characteristic to most of these parame-
ters is that they will go through several different versions



corresponding, for example, to changes in the detectors de-
finition or any other condition. This makes necessary to
have a parameter repository with a well-defined versioning
system. The runtime database (realized through the Cbm-
RuntimeDb class) is such a repository. Different inputs are
supported : Ascii format , ROOT binary format and Ora-
cle Database input. Fig.[3] shows the initialization schema
used to connect the different parameters with data.

Data CbmTask Parameters
File=1 CbmParl
Runid1 CbmTask: :SetContainers() Runid1
CbmTask::init()
Sim. Data Par. Cont.
CbmTask::Exec(]
CbmParl
File=2| * Runid2 CbmTask::Reinit() Runid2
Sim. Data Par. Cont
CbmTask::Exec() [

Figure 3: initialization schema

Implementation of the algorithms

The analysis (Reconstruction) is organized in tasks. For
each event we need to accomplish various tasks or recon-
struction algorithms. The CbmTask is an abstract class
defining a generic API allowing to execute one task and
to navigate through a list of tasks. The user can create his
own algorithm inheriting from CbmTask. Each task defines
the relevant input data and parameter and creates its partic-
ular output data during the initialization phase. During the
execution phase, the relevant input data and parameters are
retrieved from the input file and the output data objects are
stored in the output file.

SUMMARY

A VMC based framework for CBM has been imple-
mented, the first release was in march 2004. The October
2004 release was used to produce and analyze data for the
CBM technical Status report[4]. The Parameter contain-
ers and the initialization scheme is now added. Work on
digitizers and full tracking is going on.

REFERENCES

[1] R.Brun, F.Carminati, I.Hrivnacova, A.Morsch The Virtual
MonteCarlo Computing in High Energy and Nuclear Physics,
2003, 24 - 28 March 2003, La Jolla, California.

[2] R. Brun, FE. Rademakers, P. Canal, I. Antcheva, D. Buskulic,
0. Couet, A. and M. Gheata ROOT Users Guide (CERN,
Geneva, 2005)

[3] http://www.gsi.de/fair/experiments/CBM

[4] CBM Collaboration Technical Status Report (GSI, Darm-
stadt, 2005)



