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Abstract 

We describe the Capone workflow manager that was 
designed to work for Grid3 and the Open Science Grid 
(OSG) infrastructure.  It has been used extensively to run 
ATLAS managed and user production jobs during the past 
year while undergoing major redesigns to improve 
reliability and scalability as a result of lessons learned.  

This paper first introduces the new design features that 
cover job management, monitoring, troubleshooting, 
debugging and job logging. Next, the modular 
architecture which implements several key evolutionary 
changes to the system is described: a multi-threaded pool 
structure, checkpointing mechanisms, and robust 
interactions with external components; each of these were 
developed to address scalability and state persistence 
issues uncovered during operational running of the 
production system.  Finally, we provide results from 
benchmark stress tests, and compare Capone with other 
workflow managers in use for distributed production 
systems. 

INTRODUCTION 
ATLAS (A Toroidal LHC ApparatuS) [1] is being built 

by a physics collaboration involving many institutions 
worldwide. Part of its computing effort, “offline 
computing”, consists in simulating the behavior of the 
particle detector that will use the Large Hadron Collider 
at CERN (Geneva, Switzerland) beginning in 2007, and 
in reconstructing and analyzing the output data. The 
activity of offline production is organized in data 
challenges [3,9] where the infrastructure is tested and 
stressed with increasing volumes of processing. 

The Capone project was started in 2004 to deliver a 
workflow manager that could handle the managed 
production of ATLAS jobs first on Grid3 [5] and then on 
its evolution, OSG [13] which are grids composed of 
computing and storage resources from several universities 
and national laboratories mainly in the USA. Capone was 
developed primarily in Python to allow for rapid 
prototyping. Capone managed the processing of more 
than 250,000 events in DC2 and Rome production 
exercises [3] and has been used for user production and 
some analysis tests. 

Another goal the project has been to demonstrate 
development and support procedures. Capone was already 
available as a package installable with a single command 
line command using OSG’s installer. With the new 
version the project branched into separate releases: a 
stable production release (providing only bug fixes) and a 
development release that included changes and new 

features that became the next major release. Incremental 
upgrades were possible when only the patch-version 
differed. During this development period, the 
communication protocol to submit jobs and get status 
information remained unchanged within the same major 
release.  Maintaining, supporting and documenting the 
two releases required significant effort which was 
provided in part by leveraging Grid and experiment 
support systems, such as the OSG’s iGOC [8]. In 
addition, we used meetings and mailing lists, 
documentation and collaboration tools such as a Wiki [7] 
and the Savannah project portal [6], to help reduce the 
complexity of the development and support tasks.  

To improve future versions, the errors encountered 
running the production system with the different Capone 
versions, similarly described in [9], have been collected 
and classified.  Most of the errors involve data movement 
and can be reduced using throttling or retries.  Some 
errors, like Capone host interruptions or proxy problems, 
could be eliminated by providing mechanisms for 
maintain and recovery of  persistent state information. 

PRODUCTION ON GRID3 AND OSG 
The ATLAS production system in Grid3 and OSG, as in 

other Grids worldwide, follows a common schema [3] 
involving a “supervisor” layer, Windmill, interacting with 
a central production database at CERN and one or more 
“executors” components, such as Capone, which manage 
all interactions with the underlying Grid infrastructure. 
Figure 1 shows the different steps of the job workflow in 
the new version of Capone and its interactions with the 
main elements of the production system. The central part 
of the figure represents the core Capone components and 
its checkpoints. At left, additional components of the 
ATLAS production system are shown as are the 
computing and storage elements of the OSG and shared 
servers.  In the upper right section are other programs, 
such as components from the GriPhyN virtual data system 
(VDS [14]) and Condor-G [2], which execute on the same 
submit host as Capone. Also on the bottom right are the 
monitoring system elements on the submit host and on the 
remote servers. The solid arrows represent the execution 
of a job from its submission, by Windmill, to its 
“completed” state in Capone. 

Mambelli et al. [9] contains a detailed description of all 
the steps involved in the job execution. Here we will 
focus on the interactions between components and on the 
improvements from the previous architecture.  
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The workflow starts with the job supervisor, Windmill, 
sending an XML message to Capone containing a job 
execution request. Before acknowledging the acceptance 
of the job, Capone checkpoints on disk all necessary job-
specific information. From now on the job has been 
delegated to Capone for management and execution.  The 
state persistence mechanisms introduced maintain 
knowledge of the job even after catastrophic events like a 
crash of the submit host, allowing the delegation to be 
fulfilled successfully at all times. 

The next phase, detailed in [9], involves the interaction 
with some external servers and several executables 
running on the submit host. This phase has a low failure 
rate (since it is mostly local) but it is responsible for most 
of the load on the submit host because of the many 
executables involved require their own Java virtual 
machine.  In case of failure the whole process can be 
repeated since it modifies only local files and a local 
database. At the end of the process a concrete DAG 
(direct acyclic graph) is ready to be submitted via 
Condor-G to OSG sites. 

Figure 1: Job Workflow in Capone 

Condor-G shadows each running DAG with a 
management process (DAGMan [2]) which insures proper 
execution of each node in the graph.  In order to reduce 
the load on the submit host, DAGs are queued and 
grouped in batches before being submitted to a single 
DAGman process. When receiving new jobs, Capone 
queues them until the batch size is reached or a certain 
amount of time from the previous submission has lapsed; 
the user can configure both of these parameters. 

Jobs submitted by Condor-G run on remote compute 
elements (CEs) and Capone checks through Condor to 
know the current state of a job and to find out when the 
job has completed.  All the interactions with Condor are 
mediated by consumer processes to avoid overload.  On 
the CE, if necessary, all input files are first staged-in, then 
the ATLAS software, an Athena execution, is started in a 

sandbox at the remote site under the direction of a VDS 
software executable named kickstart. A wrapper script, 
called by kickstart and specific to the transformation to be 
executed, is called first to ensure that the environment is 
set up correctly before starting any ATLAS-specific 
executables.  The wrapper script also checks for any 
errors during execution and reports results back to the 
submitter through kickstart. In addition, it performs 
additional functions such as evaluating an MD5 checksum 
on all output files.  

After the execution on the CE, Capone checks if the job 
completed successfully and starts the stage-out process, 
where the job output files are copied reliably (i.e. 
verifying file size and MD5 checksum) to their final 
destination. The transfers are performed using Globus 
gridftp. Since the gridftp servers, which in many cases are 
also GRAM gateway servers, are prone to overload and 
failure, Capone performs throttling by postponing the 
transfers until the number of transfers managed by both 
source and destination servers is below a certain 
threshold. The final step performed is the registration of 
output files and metadata in a file replica catalog.  To 
improve the reliability of this step, registration failures are 
retried several times and Capone can handle also a list of 
alternative servers. It is easy to implement policies of 
active replication or backup. The file catalog in fact does 
not handle replication on its own, therefore if a final-stage 
replication is specified Capone takes care of it. 

Interactions with the supervisor Windmill to report job 
status and to validate job execution and output file 
integrity are unchanged from the previous Capone version 
described in [9]. 

NEW ARCHITECTURE 
To make Capone more resilient to failures and service 

interruptions in the grid infrastructure, several throttling 
and redundancy steps were incorporated into the code.  
These included file transfer wait and retry processes if the 
server was overloaded, and the use of a list of failover 
servers for events like file registration failures. 

The main improvements on the submit host include job 
batching, the addition of (disk) persistency and crash 
recovery, checkpointing and backtracking, and a new 
finite state machine. 

Batching is important to reduce the load on the submit 
host. Previously, each ATLAS job had its own 
independent submission workflow managed by a separate 
DAGman process. With batching, jobs are queued, 
grouped together and submitted as a batch to the Grid. 
This reduces the number of processes necessary for job 
submission and, more importantly, reduces the number of 
DAGman processes running on the submit host. There is a 
trade-off in choosing the right batch size; the bigger the 
batches, the more jobs a submit host will be able to 
handle, the smaller the batches the more responsive a 
system will be in submitting jobs as soon as they are 
received. In testing and debugging sites for Capone a 
batch size of 1 to 3 allows a quick turnaround but is 
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unlikely to reliably manage more than 1000 jobs per 
submit host.  A batch size of 10 or more was found to 
reliably scale job management to several thousands of 
jobs per submit host but with an associated slow down in 
the job submission rate. 

Previous versions of Capone had a python thread 
following the state of each job. This approach simplified 
the programming because it replicated a process handling 
a single job and was reliable since a delay in a grid 
interaction or an unexpected exception affected only a job 
that might fail. More recent versions of python increase 
the amount of memory reserved for the thread stack. In 
machines with little memory or operating systems with 
tight memory management, the number of allowed 
processes could be as little as several hundred, thus 
limiting the maximum number of jobs that could be 
handled by Capone.  The new approach is to have a few 
“special states” identified during the workflow where jobs 
are queued into a FIFO and multiple server threads move 
jobs from one of these to the following one.  This way the 
total number of threads is limited and controlled by the 
configuration, but there are still multiple threads for each 
process allowing parallel processing and providing the 
same redundancy of the previous architecture. No single 
job can stop all the others because of a grid delay. No 
single job failure can affect the flow of other jobs.  

The new architecture allows a straightforward 
implementation of state persistency management. Each 
job can be checkpointed before being added in the queues 
of the “special states”. The status saved is recoverable 
after a crash and together with Condor log files provides 
for a full recovery of all jobs (to resume almost from 
before the crash).  It is also possible to save a snapshot of 
the current execution or to restore a previously saved one. 
This feature can be used to move all or some of the jobs 
to a different instance of Capone and to perform 
backtracking. If one or more jobs failed because of a 
transient error condition which has now been solved (e.g. 
a network interruption or an expired proxy) and the 
failure has not been communicated to the supervisor, 
these jobs can be moved back to their last healthy status 
and restarted from that point. 

Other minor architecture changes included the use of a 
directory tree to store job information since the previous 
flat structure did not perform as well and could not hold 
more than 32000 jobs because of an ext3 file system 
limitation, and several utility scripts and programs to: 
rotate log files, compress or remove information about 
completed jobs, and provide additional help in debugging, 
troubleshooting, WS job submission and analysing the 
local log files and the remote CE execution directory. 

BENCHMARKS  
Several tests have been performed to evaluate the new 

software under normal operation and overload conditions. 
Each test consisted of starting Capone on a submit host, 
submitting jobs using cclient and measuring submit rates, 
load on the host, and number of jobs in different states.  

Table 1: Test results per submit host for a typical Capone 
job management session (“C-G” indicates Condor-G 

managed jobs). 

 
The mix of test jobs included actual ATLAS jobs (short 

event generation and detector simulation jobs) and simple 
test jobs (CPU intensive and/or ‘sleep like’ jobs). Each 
test was repeated several times and the results collected in 
Table 1 are the average, maximum, and minimum values 
observed in different repetitions of the test. 

Further tests verified the reaction of Capone to failures 
of external components of the system, like a crash of the 
machine or a network interruption.  

Test 1: Scalability and Load Evaluation 
A test to evaluate performance of a Capone job 
management session consisted of submitting jobs in a 
ramp-up phase until the number of jobs was about twice 
the number of available CPUs, and then maintaining that 
set of jobs. The submit rate, measured both during the 
ramp-up phase and during the steady state phase, was 
almost independent of the total number of jobs: a job that 
is running in a remote CE or staging in or out files causes 
little load on the Capone submit host.  The submission 
rate was instead more sensitive to the number of jobs still 
in the submit state. Both decoding the XML message 
associated with job submission and executing the local 
steps from the VDS components are CPU intensive. The 
failure rate during this test was around 1.5% excluding 
the DNS failure mentioned below.  While the CPU load 
on the submit host can reach values as high as 70 during 
job submission, the machine never became unresponsive, 
with the load returning to below 1 once all jobs completed 
the submission steps.  The DNS failure during one of the 
iterations caused the failure of almost all the running jobs 
(due to timeouts) and provided  a reason to test the 
recoverability of the jobs. All jobs recovered succesfully. 

Test 2: Overload Conditions 
Another test was used to test the system under heavy 

load conditions. The goal was to keep more than 4000 
jobs running for an extended period of time (4-6 hours). 

Measure Avg min max 

Submission rate 
(jobs/min) 

541 281 1132 

Grid Submit rate 
(jobs/min) 

18 15 48 

Running jobs 4019 0 6746 

Total jobs 7176 0 8100 

C-G running 385.4 68 596 

C-G pending 345.1 14 537 

C-G unsubmitted 564.9 0 1344 

C-G total 1310.4 82 2481 



The results are similar to those of the previous test. The 
number of jobs actually running on the worker nodes of 
the CE remained around 500. This number is bounded by 
the available CPUs, while the jobs queued at the CEs or 
in the submit host can be higher. This increment causes 
higher load in all the components of the distributed 
system and a higher failure rate around 6.5%; mainly 
concentrated on a few overloaded CEs, without increasing 
the actual speed at which the jobs were executing and 
completing. 

Test 3: Recoverability from System Crashes, 
Backups and Snapshots 

After a catastrophic failure of the submit host, like a 
system crash, a shutdown, or after killing all Capone 
processes, Capone can be restarted in recovery mode and 
will pick up from where it left off. Most of the jobs will 
be able to continue without problems. The few observed 
failures were due mainly to timeouts in Condor or GRAM 
or the partial execution of external interactions that were 
not idempotent, like the registration in the file catalogue. 
The rollback to a previous checkpoint of the failed jobs, 
after some recovery action if required, allows recovery of 
most of these failures. 

The rollback mechanism also proved to be a powerful 
solution to recover jobs after transient failures like the 
expiration of the proxy or a network failure. In this case 
Capone had to be stopped, the problem was diagnosed 
and removed, e.g. by renewing the proxy or reinstating 
the connectivity. Then some recovery action had to be 
performed like removing a partial transfer or a partial 
registration. Finally the job status can be reverted to a 
previous state and Capone restarted in recovery mode. 

The recovery time is proportional to the number of 
jobs. For a submit rate of about 1000 jobs/min Capone 
took less than 7 min to recover more than 8000 jobs.  

The recovery and rollback mechanisms included the 
possibility of taking a snapshot of the current status for 
backup purposes or for later re-execution. Using a 
backup, it is possible to have a different submit host 
continuing from where the original one left off. Another 
recovery procedure that worked during the tests, but is not 
recommended for production, is to select jobs from 
different snapshots and add them to a running or entirely 
new Capone instance.  

RELATED WORK AND CONCLUSIONS 
There are many software frameworks which have been 

developed for similar, but experiment-specific workflows 
in high energy physics.  Others have been developed to 
handle generic applications on the Grid.  DAGMan [2] 
requires a generic workflow specified as a sequence of 
nodes interconnected in an acyclic graph.  It is flexible 
and reliable but somewhat heavy and difficult to use 
directly. Other solutions like the Lexor [10] or CG-
executor [12] move part of the workflow in a script and 
rely on external components to hold the job state 
information.  Dirac [11] implements a job “pull” model 

where a placeholder job request is made to a central 
server once a resource has been acquired. It uses 
resources less efficiently but is more responsive and 
provides a slightly different workflow, tailored to the 
needs of another LHC experiment. PanDA [4] is the new 
ATLAS job execution system for OSG and has a partially 
data-driven model similar to Dirac: brokerage places the 
data, a job dispatcher uses the brokered information and 
sends the job when data has been identified as having 
been transferred. 

Capone is a flexible tool targeted to ATLAS production 
but able to execute different tasks such as analysis or 
general user scripts.  The tests show that it can scale to 
more than 4000 jobs per submit host (far more than the 
currently available resources),  recover completely from a 
host crash, and reduce or eliminate several errors 
experienced during DC2 and Rome production. 
Submission rate and responsiveness could be further 
improved by submitting multiple jobs at the 
simultaneously or by moving to a pull model such as 
developed in Dirac and PanDA. 

ACKNOWLEDGEMENTS 
This work was supported in part by the US Department 

of Energy and by National Science Foundation Grants 
ITR-0122557 and PHY/ITR-0113343. Argonne National 
Laboratory's work was supported by the U.S. Department 
of Energy, Office of Science, Office of High Energy 
Physics, under contract W-31-109-Eng-38. 

REFERENCES  
[1] A Toroidal LHC ApparatuS, http://atlas.web.cern.ch/  
[2] DAGman: http://www.cs.wisc.edu/condor/dagman/ 
[3] K. De at al, “Lessons from ATLAS DC2 and Rome 

Production on Grid3”, CHEP, 2006 
[4] K. De et al. “Panda: Production and Distributed 

Analysis System for ATLAS”, CHEP, 2006 
[5] The Grid2003 Project “The Grid2003 Production 

Grid: Principles and Practice”, HPDC13, 2004, 
Honol., HI, Grid2003, http://www.ivdgl.org/grid2003 

[6] http://griddev.uchicago.edu/savannah/projects/atgce/ 
[7] https://uimon.cern.ch/twiki/bin/view/Atlas/Capone 
[8] iGOC http://goc.ivdgl.org/ 
[9] M. Mambelli et al., “ATLAS Data Challenge 

production on GRID3”, CHEP, 2004 
[10] D. Rebatto “The LCG-2 Executor for the ATLAS 

DC2 Production System”, CHEP, 2004 
[11] A. Tsaregorodtsev et al. “DIRAC: A Scalable 

Lightweight Architecture for High Throughput 
Computing,” grid, pp. 19-25, Fifth IEEE/ACM Intl. 
Workshop on Grid Computing (GRID'04), 2004 

[12] R. Walker, M. Vetterli, et al. “A Grid of Grids using 
Condor-G”, CHEP, 2006 

[13] F. Wuerthwein, R. Pordes, “The Open Science Grid”, 
CHEP, 2006 

[14] Y. Zhao, M. Wilde, et al. “Virtual Data Grid 
Middleware Services for Data-Intensive Science”, 
Middleware 2004, August 2004, Toronto, Canada 


