
THE CAPONE WORKFLOW MANAGER

M. Mambelli*, R.W. Gardner**, The University of Chicago, USA

J. Gieraltowski#, Argonne National Laboratory, USA

Abstract

We describe the Capone workflow manager that was
designed to work for Grid3 and the Open Science Grid
(OSG) infrastructure. It has been used extensively to run
ATLAS managed and user production jobs during the past
year while undergoing major redesigns to improve
reliability and scalability as a result of lessons learned.

This paper first introduces the new design features that
cover job management, monitoring, troubleshooting,
debugging and job logging. Next, the modular
architecture which implements several key evolutionary
changes to the system is described: a multi-threaded pool
structure, checkpointing mechanisms, and robust
interactions with external components; each of these were
developed to address scalability and state persistence
issues uncovered during operational running of the
production system. Finally, we provide results from
benchmark stress tests, and compare Capone with other
workflow managers in use for distributed production
systems.

INTRODUCTION
ATLAS (A Toroidal LHC ApparatuS) [1] is being built

by a physics collaboration involving many institutions
worldwide. Part of its computing effort, “offline
computing”, consists in simulating the behavior of the
particle detector that will use the Large Hadron Collider
at CERN (Geneva, Switzerland) beginning in 2007, and
in reconstructing and analyzing the output data. The
activity of offline production is organized in data
challenges [3,9] where the infrastructure is tested and
stressed with increasing volumes of processing.

The Capone project was started in 2004 to deliver a
workflow manager that could handle the managed
production of ATLAS jobs first on Grid3 [5] and then on
its evolution, OSG [13] which are grids composed of
computing and storage resources from several universities
and national laboratories mainly in the USA. Capone was
developed primarily in Python to allow for rapid
prototyping. Capone managed the processing of more
than 250,000 events in DC2 and Rome production
exercises [3] and has been used for user production and
some analysis tests.

Another goal the project has been to demonstrate
development and support procedures. Capone was already
available as a package installable with a single command
line command using OSG’s installer. With the new
version the project branched into separate releases: a
stable production release (providing only bug fixes) and a
development release that included changes and new

features that became the next major release. Incremental
upgrades were possible when only the patch-version
differed. During this development period, the
communication protocol to submit jobs and get status
information remained unchanged within the same major
release. Maintaining, supporting and documenting the
two releases required significant effort which was
provided in part by leveraging Grid and experiment
support systems, such as the OSG’s iGOC [8]. In
addition, we used meetings and mailing lists,
documentation and collaboration tools such as a Wiki [7]
and the Savannah project portal [6], to help reduce the
complexity of the development and support tasks.

To improve future versions, the errors encountered
running the production system with the different Capone
versions, similarly described in [9], have been collected
and classified. Most of the errors involve data movement
and can be reduced using throttling or retries. Some
errors, like Capone host interruptions or proxy problems,
could be eliminated by providing mechanisms for
maintain and recovery of persistent state information.

PRODUCTION ON GRID3 AND OSG
The ATLAS production system in Grid3 and OSG, as in

other Grids worldwide, follows a common schema [3]
involving a “supervisor” layer, Windmill, interacting with
a central production database at CERN and one or more
“executors” components, such as Capone, which manage
all interactions with the underlying Grid infrastructure.
Figure 1 shows the different steps of the job workflow in
the new version of Capone and its interactions with the
main elements of the production system. The central part
of the figure represents the core Capone components and
its checkpoints. At left, additional components of the
ATLAS production system are shown as are the
computing and storage elements of the OSG and shared
servers. In the upper right section are other programs,
such as components from the GriPhyN virtual data system
(VDS [14]) and Condor-G [2], which execute on the same
submit host as Capone. Also on the bottom right are the
monitoring system elements on the submit host and on the
remote servers. The solid arrows represent the execution
of a job from its submission, by Windmill, to its
“completed” state in Capone.

Mambelli et al. [9] contains a detailed description of all
the steps involved in the job execution. Here we will
focus on the interactions between components and on the
improvements from the previous architecture.

*marco@hep.uchicago.edu, ** rwg@hep.uchicago.edu
 #jerryg@anl.gov

The workflow starts with the job supervisor, Windmill,
sending an XML message to Capone containing a job
execution request. Before acknowledging the acceptance
of the job, Capone checkpoints on disk all necessary job-
specific information. From now on the job has been
delegated to Capone for management and execution. The
state persistence mechanisms introduced maintain
knowledge of the job even after catastrophic events like a
crash of the submit host, allowing the delegation to be
fulfilled successfully at all times.

The next phase, detailed in [9], involves the interaction
with some external servers and several executables
running on the submit host. This phase has a low failure
rate (since it is mostly local) but it is responsible for most
of the load on the submit host because of the many
executables involved require their own Java virtual
machine. In case of failure the whole process can be
repeated since it modifies only local files and a local
database. At the end of the process a concrete DAG
(direct acyclic graph) is ready to be submitted via
Condor-G to OSG sites.

Figure 1: Job Workflow in Capone

Condor-G shadows each running DAG with a
management process (DAGMan [2]) which insures proper
execution of each node in the graph. In order to reduce
the load on the submit host, DAGs are queued and
grouped in batches before being submitted to a single
DAGman process. When receiving new jobs, Capone
queues them until the batch size is reached or a certain
amount of time from the previous submission has lapsed;
the user can configure both of these parameters.

Jobs submitted by Condor-G run on remote compute
elements (CEs) and Capone checks through Condor to
know the current state of a job and to find out when the
job has completed. All the interactions with Condor are
mediated by consumer processes to avoid overload. On
the CE, if necessary, all input files are first staged-in, then
the ATLAS software, an Athena execution, is started in a

sandbox at the remote site under the direction of a VDS
software executable named kickstart. A wrapper script,
called by kickstart and specific to the transformation to be
executed, is called first to ensure that the environment is
set up correctly before starting any ATLAS-specific
executables. The wrapper script also checks for any
errors during execution and reports results back to the
submitter through kickstart. In addition, it performs
additional functions such as evaluating an MD5 checksum
on all output files.

After the execution on the CE, Capone checks if the job
completed successfully and starts the stage-out process,
where the job output files are copied reliably (i.e.
verifying file size and MD5 checksum) to their final
destination. The transfers are performed using Globus
gridftp. Since the gridftp servers, which in many cases are
also GRAM gateway servers, are prone to overload and
failure, Capone performs throttling by postponing the
transfers until the number of transfers managed by both
source and destination servers is below a certain
threshold. The final step performed is the registration of
output files and metadata in a file replica catalog. To
improve the reliability of this step, registration failures are
retried several times and Capone can handle also a list of
alternative servers. It is easy to implement policies of
active replication or backup. The file catalog in fact does
not handle replication on its own, therefore if a final-stage
replication is specified Capone takes care of it.

Interactions with the supervisor Windmill to report job
status and to validate job execution and output file
integrity are unchanged from the previous Capone version
described in [9].

NEW ARCHITECTURE
To make Capone more resilient to failures and service

interruptions in the grid infrastructure, several throttling
and redundancy steps were incorporated into the code.
These included file transfer wait and retry processes if the
server was overloaded, and the use of a list of failover
servers for events like file registration failures.

The main improvements on the submit host include job
batching, the addition of (disk) persistency and crash
recovery, checkpointing and backtracking, and a new
finite state machine.

Batching is important to reduce the load on the submit
host. Previously, each ATLAS job had its own
independent submission workflow managed by a separate
DAGman process. With batching, jobs are queued,
grouped together and submitted as a batch to the Grid.
This reduces the number of processes necessary for job
submission and, more importantly, reduces the number of
DAGman processes running on the submit host. There is a
trade-off in choosing the right batch size; the bigger the
batches, the more jobs a submit host will be able to
handle, the smaller the batches the more responsive a
system will be in submitting jobs as soon as they are
received. In testing and debugging sites for Capone a
batch size of 1 to 3 allows a quick turnaround but is

VDC

ChimeraAccepted

Condor-G
schedd

GridMgr

CE

gatekeepergsiftp

WN

SE

RLS

Monitoring
MDS

GridCat

MonALISA

PegasusProdDB

DonQuijote

Submit ready

Completed

SO ready

Submitted

Windmill

Capone

VDC

ChimeraAccepted

Condor-G
schedd

GridMgr

CE

gatekeepergsiftp

WN

SE

RLS

Monitoring
MDS

GridCat

MonALISA

PegasusProdDB

DonQuijote

Submit ready

Completed

SO ready

Submitted

Windmill

Capone

unlikely to reliably manage more than 1000 jobs per
submit host. A batch size of 10 or more was found to
reliably scale job management to several thousands of
jobs per submit host but with an associated slow down in
the job submission rate.

Previous versions of Capone had a python thread
following the state of each job. This approach simplified
the programming because it replicated a process handling
a single job and was reliable since a delay in a grid
interaction or an unexpected exception affected only a job
that might fail. More recent versions of python increase
the amount of memory reserved for the thread stack. In
machines with little memory or operating systems with
tight memory management, the number of allowed
processes could be as little as several hundred, thus
limiting the maximum number of jobs that could be
handled by Capone. The new approach is to have a few
“special states” identified during the workflow where jobs
are queued into a FIFO and multiple server threads move
jobs from one of these to the following one. This way the
total number of threads is limited and controlled by the
configuration, but there are still multiple threads for each
process allowing parallel processing and providing the
same redundancy of the previous architecture. No single
job can stop all the others because of a grid delay. No
single job failure can affect the flow of other jobs.

The new architecture allows a straightforward
implementation of state persistency management. Each
job can be checkpointed before being added in the queues
of the “special states”. The status saved is recoverable
after a crash and together with Condor log files provides
for a full recovery of all jobs (to resume almost from
before the crash). It is also possible to save a snapshot of
the current execution or to restore a previously saved one.
This feature can be used to move all or some of the jobs
to a different instance of Capone and to perform
backtracking. If one or more jobs failed because of a
transient error condition which has now been solved (e.g.
a network interruption or an expired proxy) and the
failure has not been communicated to the supervisor,
these jobs can be moved back to their last healthy status
and restarted from that point.

Other minor architecture changes included the use of a
directory tree to store job information since the previous
flat structure did not perform as well and could not hold
more than 32000 jobs because of an ext3 file system
limitation, and several utility scripts and programs to:
rotate log files, compress or remove information about
completed jobs, and provide additional help in debugging,
troubleshooting, WS job submission and analysing the
local log files and the remote CE execution directory.

BENCHMARKS
Several tests have been performed to evaluate the new

software under normal operation and overload conditions.
Each test consisted of starting Capone on a submit host,
submitting jobs using cclient and measuring submit rates,
load on the host, and number of jobs in different states.

Table 1: Test results per submit host for a typical Capone
job management session (“C-G” indicates Condor-G

managed jobs).

The mix of test jobs included actual ATLAS jobs (short

event generation and detector simulation jobs) and simple
test jobs (CPU intensive and/or ‘sleep like’ jobs). Each
test was repeated several times and the results collected in
Table 1 are the average, maximum, and minimum values
observed in different repetitions of the test.

Further tests verified the reaction of Capone to failures
of external components of the system, like a crash of the
machine or a network interruption.

Test 1: Scalability and Load Evaluation
A test to evaluate performance of a Capone job
management session consisted of submitting jobs in a
ramp-up phase until the number of jobs was about twice
the number of available CPUs, and then maintaining that
set of jobs. The submit rate, measured both during the
ramp-up phase and during the steady state phase, was
almost independent of the total number of jobs: a job that
is running in a remote CE or staging in or out files causes
little load on the Capone submit host. The submission
rate was instead more sensitive to the number of jobs still
in the submit state. Both decoding the XML message
associated with job submission and executing the local
steps from the VDS components are CPU intensive. The
failure rate during this test was around 1.5% excluding
the DNS failure mentioned below. While the CPU load
on the submit host can reach values as high as 70 during
job submission, the machine never became unresponsive,
with the load returning to below 1 once all jobs completed
the submission steps. The DNS failure during one of the
iterations caused the failure of almost all the running jobs
(due to timeouts) and provided a reason to test the
recoverability of the jobs. All jobs recovered succesfully.

Test 2: Overload Conditions
Another test was used to test the system under heavy

load conditions. The goal was to keep more than 4000
jobs running for an extended period of time (4-6 hours).

Measure Avg min max

Submission rate
(jobs/min)

541 281 1132

Grid Submit rate
(jobs/min)

18 15 48

Running jobs 4019 0 6746

Total jobs 7176 0 8100

C-G running 385.4 68 596

C-G pending 345.1 14 537

C-G unsubmitted 564.9 0 1344

C-G total 1310.4 82 2481

The results are similar to those of the previous test. The
number of jobs actually running on the worker nodes of
the CE remained around 500. This number is bounded by
the available CPUs, while the jobs queued at the CEs or
in the submit host can be higher. This increment causes
higher load in all the components of the distributed
system and a higher failure rate around 6.5%; mainly
concentrated on a few overloaded CEs, without increasing
the actual speed at which the jobs were executing and
completing.

Test 3: Recoverability from System Crashes,
Backups and Snapshots

After a catastrophic failure of the submit host, like a
system crash, a shutdown, or after killing all Capone
processes, Capone can be restarted in recovery mode and
will pick up from where it left off. Most of the jobs will
be able to continue without problems. The few observed
failures were due mainly to timeouts in Condor or GRAM
or the partial execution of external interactions that were
not idempotent, like the registration in the file catalogue.
The rollback to a previous checkpoint of the failed jobs,
after some recovery action if required, allows recovery of
most of these failures.

The rollback mechanism also proved to be a powerful
solution to recover jobs after transient failures like the
expiration of the proxy or a network failure. In this case
Capone had to be stopped, the problem was diagnosed
and removed, e.g. by renewing the proxy or reinstating
the connectivity. Then some recovery action had to be
performed like removing a partial transfer or a partial
registration. Finally the job status can be reverted to a
previous state and Capone restarted in recovery mode.

The recovery time is proportional to the number of
jobs. For a submit rate of about 1000 jobs/min Capone
took less than 7 min to recover more than 8000 jobs.

The recovery and rollback mechanisms included the
possibility of taking a snapshot of the current status for
backup purposes or for later re-execution. Using a
backup, it is possible to have a different submit host
continuing from where the original one left off. Another
recovery procedure that worked during the tests, but is not
recommended for production, is to select jobs from
different snapshots and add them to a running or entirely
new Capone instance.

RELATED WORK AND CONCLUSIONS
There are many software frameworks which have been

developed for similar, but experiment-specific workflows
in high energy physics. Others have been developed to
handle generic applications on the Grid. DAGMan [2]
requires a generic workflow specified as a sequence of
nodes interconnected in an acyclic graph. It is flexible
and reliable but somewhat heavy and difficult to use
directly. Other solutions like the Lexor [10] or CG-
executor [12] move part of the workflow in a script and
rely on external components to hold the job state
information. Dirac [11] implements a job “pull” model

where a placeholder job request is made to a central
server once a resource has been acquired. It uses
resources less efficiently but is more responsive and
provides a slightly different workflow, tailored to the
needs of another LHC experiment. PanDA [4] is the new
ATLAS job execution system for OSG and has a partially
data-driven model similar to Dirac: brokerage places the
data, a job dispatcher uses the brokered information and
sends the job when data has been identified as having
been transferred.

Capone is a flexible tool targeted to ATLAS production
but able to execute different tasks such as analysis or
general user scripts. The tests show that it can scale to
more than 4000 jobs per submit host (far more than the
currently available resources), recover completely from a
host crash, and reduce or eliminate several errors
experienced during DC2 and Rome production.
Submission rate and responsiveness could be further
improved by submitting multiple jobs at the
simultaneously or by moving to a pull model such as
developed in Dirac and PanDA.

ACKNOWLEDGEMENTS
This work was supported in part by the US Department

of Energy and by National Science Foundation Grants
ITR-0122557 and PHY/ITR-0113343. Argonne National
Laboratory's work was supported by the U.S. Department
of Energy, Office of Science, Office of High Energy
Physics, under contract W-31-109-Eng-38.

REFERENCES
[1] A Toroidal LHC ApparatuS, http://atlas.web.cern.ch/
[2] DAGman: http://www.cs.wisc.edu/condor/dagman/
[3] K. De at al, “Lessons from ATLAS DC2 and Rome

Production on Grid3”, CHEP, 2006
[4] K. De et al. “Panda: Production and Distributed

Analysis System for ATLAS”, CHEP, 2006
[5] The Grid2003 Project “The Grid2003 Production

Grid: Principles and Practice”, HPDC13, 2004,
Honol., HI, Grid2003, http://www.ivdgl.org/grid2003

[6] http://griddev.uchicago.edu/savannah/projects/atgce/
[7] https://uimon.cern.ch/twiki/bin/view/Atlas/Capone
[8] iGOC http://goc.ivdgl.org/
[9] M. Mambelli et al., “ATLAS Data Challenge

production on GRID3”, CHEP, 2004
[10] D. Rebatto “The LCG-2 Executor for the ATLAS

DC2 Production System”, CHEP, 2004
[11] A. Tsaregorodtsev et al. “DIRAC: A Scalable

Lightweight Architecture for High Throughput
Computing,” grid, pp. 19-25, Fifth IEEE/ACM Intl.
Workshop on Grid Computing (GRID'04), 2004

[12] R. Walker, M. Vetterli, et al. “A Grid of Grids using
Condor-G”, CHEP, 2006

[13] F. Wuerthwein, R. Pordes, “The Open Science Grid”,
CHEP, 2006

[14] Y. Zhao, M. Wilde, et al. “Virtual Data Grid
Middleware Services for Data-Intensive Science”,
Middleware 2004, August 2004, Toronto, Canada

