
COOL DEVELOPMENT AND DEPLOYMENT:
STATUS AND PLANS

A.Valassi, CERN IT-PSS, Geneva, Switzerland

S. A. Schmidt, Institut für Physik, University of Mainz, Germany
M. Clemencic, CERN PH-LBC, Geneva, Switzerland

D. Front, Weizmann Institute, Israel and CERN IT-PSS, Geneva, Switzerland
 U. Moosbrugger, Institut für Physik, University of Mainz, Germany

Abstract

Since October 2004, the LCG Conditions Database
Project has focused on the development of COOL, a new
software product for the handling of the conditions data of
the LHC experiments. The COOL software merges and
extends the functionalities of the two previous software
packages developed in the context of the LCG common
project, which were based on Oracle and MySQL. COOL
is designed to minimise the duplication of effort
whenever possible by developing a single implementation
to support persistency for several relational technologies
(Oracle, MySQL and SQLite), based on the LCG
Common Relational Abstraction Layer (CORAL) and on
the SEAL libraries. The same user code may be used to
store data into any one of these backends, as COOL
functionalities are encapsulated by a technology-neutral
C++ API. After several production releases of the COOL
software, the project is now moving into the deployment
phase in Atlas and LHCb, the two experiments that are
developing the software in collaboration with the CERN
IT department. This paper reviews the status and plans for
COOL development and deployment in April 2006,
shortly after the CHEP 2006 conference.

INTRODUCTION
The LCG Conditions Database project [1] was

launched in July 2003 with the goal of implementing a
common persistency solution for the storage and
management of the conditions data of the Large Hadron
Collider (LHC) experiments at CERN, which are
scheduled to start operation in 2007. The project, which
is part of the Persistency Framework of the LHC
Computing Grid (LCG) Applications Area, draws on a
rich background of previous common activities in the area
of conditions data for LHC and other experiments. This
includes, in particular, the collaborative effort of some
experiments and the IT Department at CERN to define a
common C++ API for conditions data access and the
successive implementations of this API using different
storage technologies, first the Objectivity [2] object
database, later the Oracle [3] and MySQL [4] relational
databases. The experience of the BaBar experiment with
Conditions Databases [5] significantly influenced the
definition of the original data model and API.

From July 2003 until October 2004, as reviewed at the
last CHEP conference in September 2004 [6], the project
was active in the two areas corresponding to the tasks
assigned to it in its mandate: first, in the integration of the

existing Oracle and MySQL implementations into the
LCG Applications Area (AA) scope; second, in the review
of the two packages and their APIs, with the goal of
discussing and planning their evolution into software
products that may satisfy the common requirements of
several LHC experiments.

In this initial phase, the progress of the project in the
actual development of common software and tools was
slowed down by two problems. First, the lack of
committed manpower available for development did not
allow much more than the integration of the two existing
packages into the LCG Application Area, without any
functionality enhancements. A larger development effort
was carried out within ATLAS to maintain and extend the
software and tools for the storage and management of the
experiment test beam conditions data, but this activity
mainly focused on ATLAS-specific needs rather than on
requirements shared by several experiments. Secondly,
the lack of a consistent approach between the APIs of the
two existing implementations significantly limited the
possibility for fast development of further software
components and tools along a unified direction.

Birth of the COOL
The situation significantly improved at the end of 2004,

thanks to the success of the project in its parallel task of
reviewing the existing packages to propose a common
program of work for their evolution, such that more than
one experiment could benefit from it and would commit
resources to implement it. Following the many
discussions during this period, in particular that held at
the LCG AA Meeting in October 2004 [7-8], the decision
was taken to start the development of a new software
product, merging and enhancing the functionalities of the
two existing packages along a unified direction. The
development of COOL (Conditions Objects for LCG) was
thus started in November 2004, initially by a team of two
persons, from CERN IT and Atlas. Following an
aggressive development schedule, the first production
version of the software COOL 1.0.0, providing the same
user-level functionality as the two previous Oracle and
MySQL implementations, was released in April 2005.

Over time, additional contributors from LHCb, Atlas
and CERN IT have joined the core team, allowing the
progressive functional enhancement of the software, in
addition to its bug fixing, performance optimization and
porting to new platforms and external package versions. A
comprehensive test suite has been developed in parallel to
the implementation code, allowing its consolidation over

successive release cycles. In total, seventeen versions of
the software have been released so far by the core COOL
team (averaging approximately 2.5 FTE active on
development since the start of the project), the latest
being the 1.3.0 release at the time of writing in April
2006. As requested by the experiments, development has
consistently focused on relational database technologies,
providing support initially for Oracle and MySQL in
COOL 1.0.0 and soon after (COOL 1.2.1 in July 2005) for
the SQLite [9] file-based SQL database engine.

In parallel to the core development activities, the
integration and testing of COOL in the software
frameworks of the two experiments participating in its
development has progressed significantly, as reported in
the relevant presentations by Atlas [10-11] and LHCb [12]
at this conference. Additional tests of the software
simulating its production deployment and use in a
distributed environment have also been performed [13], in
collaboration between the COOL team, the experiments
and the LCG 3D project [14].

COOL DESIGN OVERVIEW
The basic data model of COOL is essentially the same

as that used by the two previous LCG implementations.
The set of values that are needed to represent a given
conditions “data item” (such as the calibration of a given
subdetector) are encapsulated into a “conditions data
object”, the smallest atomic entity of conditions data that
can be manipulated individually. For a given data item,
each conditions data object has an “interval of validity”
(IOV) and may exist in more than one version. Three
pieces of metadata are needed to lookup a conditions data
object: a data item identifier, the time point for which a
valid object is required, and a version number or a “tag”
name. In addition to its metadata, each object is also
associated to its actual conditions data “payload”, i.e. the
set of values of the physical quantities describing the state
of the detector (such as a set of calibration parameters). In
COOL, the data payload of a conditions data object is
represented as an instance of the CORAL AttributeList
class [15], i.e. as a list of attributes of simple data types
(such as numbers or strings).

Taking into account the limited resources available for
its development, as well as the problems caused in the
past phase of the project mainly by the divergence of the
two previous packages [6], the design of the COOL
software has been driven from the start by the need to
avoid all duplication of effort, both internally amongst the
different provided functionalities and supported persistent
technologies, and more widely in the context of the LCG.

Single relational implementation using CORAL
These two goals were first and foremost achieved by

the choice to base the development of the relational
implementation of COOL on the CORAL Common
Relational Access Layer [15-16] (previously known as
RAL, the POOL Relational Access Layer [6]). To start
with, the use of CORAL has made it possible to develop a
single implementation for all supported relational
backends, where only a limited number of lines of code

are needed to handle the special case of data stored using
a specific technology. At the same time, delegating
complex and largely backend-specific tasks, such as the
handling of SQL statements and their integration with the
relevant C++ client libraries, to the CORAL component
has significantly reduced the load on the COOL team. The
collaboration with the friendly CORAL team has been
very easy and mutually beneficial, resulting in faster bug
fixes and more focused enhancements of both packages.

Within COOL, the CORAL software acts as an
abstraction and insulation layer that decouples the COOL
implementation code from the choice of the underlying
relational storage technology. Almost all COOL
implementation code has been written without the a-priori
knowledge whether it would be used for Oracle, MySQL
or another backend. Indeed, while COOL 1.0.0 could only
manage data stored using one of these two backends, the
later addition of support for SQLite required only minor
efforts, as only a few lines of COOL code had to be added
to solve issues specific to the SQLite backend.

Single relational schema for all backends
This huge simplification of the development and

maintenance effort, however, was only possible because
of another independent design choice: that of using
exactly the same relational schema for all technologies
supported via CORAL. While this comes at the expense
of not being able to use features that are not supported by
all backends (such as views or partitioning), schema
differences and other backend-specific optimizations can
always be implemented at a later stage, if needed.

The choice of using the same schema for different
relational backends was also motivated [6] by the need to
ease the replication of conditions data in the LCG
distributed computing environment, where the current
deployment models foresee the use of Oracle at Tiers 0
and 1, and MySQL and SQLite at higher Tiers [14]. While
data extraction and copy tools based on the C++ API have
been included in COOL since release 1.2.6 (November
2005), application-independent cross-vendor replication
of relational data stored using the same logical schema is
also possible at the level of the persistent backends. Tools
for such cross-vendor replication, for instance between
Oracle at Tier 0 and MySQL at Tier 2, are being
developed in the context of the LCG 3D project [14].
Tools for the relatively simpler case of same-vendor
replication at the database level, for instance between
Oracle at Tier 0 and Oracle at Tier 1 via the Oracle
Streams technology [3], are also being developed and
tested within the 3D project.

Implementation of abstract C++ interfaces
As it was the case for the two previous LCG conditions

database packages, the COOL software is based on the
implementation of abstract C++ interfaces that do not
expose any backend-dependent features. From a user
level perspective, this means that the same user code can
be used with almost no change for the many supported
technologies. At the same time, this allows the internal
implementation to be changed without any impact on the

users. As the interfaces do not even assume that its
implementation must be based on a relational database
management system, a non-relational implementation of
the same C++ API may also be envisaged if ever required.

Reuse of LCG software and infrastructure
The collaborations of COOL with the CORAL and 3D

projects are just two examples of the more general COOL
design choice to reuse as much as possible any software,
tools and expertise already available in the LCG context,
to avoid any duplication of effort. This is also the wider
direction of the LCG Application Area as a whole [17].

At the software level, COOL heavily depends (either
directly or through CORAL) on the SEAL core libraries
and services, in areas such as the component model,
messaging, runtime configuration and dynamic plugin
loading, as well as for the handling of data types such as
64-bit precision integers or time classes. While the C++
implementation of COOL does not depend on reflection
and dictionaries, the Reflex package [18] is needed by the
PyCool component, which allows fast interactive access
to the COOL functionalities from a Python shell through a
“Python-ized” version of the C++ API. Since the COOL
1.2.8 release (January 2006), this has introduced a
dependency of COOL on the ROOT framework [19]
because of the recent merger of the SEAL and ROOT
projects [17]. The dependency of COOL on ROOT is
presently limited to the use of the ROOT Reflex
component in PyCool: new dependencies may arise as the
merger of SEAL and ROOT progresses.

Finally, COOL also owes to other LCG AA projects for
much of its configuration and development infrastructure,
mainly to the SPI project, but also to CORAL and POOL.

Clearly delimited software scope
More generally speaking, avoiding duplication of effort

has been possible by clearly delimiting COOL as a
software component with a well-defined scope: the
management of the time variation and versioning of the
conditions data of a generic LHC experiment, the non-
event data describing the state of the detector at the time
of data taking. As previously discussed, COOL delegates
to other LCG projects many tasks which can be
performed in a more generic way, such as the generic
C++ access to relational data, handled by CORAL, or the
generic deployment and distribution of relational data,
handled within the 3D project. At the same time, COOL
does not attempt to solve the problems specific to a given
experiment, focusing instead on providing flexible
software solutions that different groups of users in the
various experiments may configure to solve their needs.

So far, the scope of the COOL software has been
further restricted to focus primarily on the conditions data
requirements for event reconstruction and analysis, where
the main use case is the “direct” lookup of a set of
conditions data objects in a given time range and for a
given tagged version. In particular, COOL presently
provides no special functionality to address the “inverse”
lookup of the time ranges during which given values of
data payload were observed, for instance, temperatures

higher than the allowed maximum. This is a very different
use case, relevant to detector experts who need to identify
and solve any malfunctioning of the apparatus for which
they are responsible. Specific solutions optimizing the
performance for this use case via server-side database
queries may be provided in a future COOL release, but
this issue is still being discussed. For the moment, this use
case can only be addressed in COOL through the same
“client full scan” methodology that is generally used for
event analysis, i.e. by retrieving all conditions data
observed during a larger time span and looking for any
payload measurements in the region of interest.

Consistent metadata model for several use cases
To provide the flexibility required by the users, the

COOL API offers many hooks to customize the storage of
conditions according to the data model most appropriate
to each user. For instance, two basic modes of operations
are foreseen: a “single-version” mode, optimized for
online data such as temperatures, which vary in time but
only exist in the single version that is the result of a direct
measurement; and a “multi-version” mode, allowing the
versioning and tagging of offline data such as calibration
parameters, which can be recomputed according to
several different algorithms. At the same time, thanks to
the use of the AttributeList, some users may describe the
data payload of their conditions data objects encoded as a
string in a long character object (CLOB), while other
users may represent it as an actual list of floats or
integers. Finally, COOL allows users to store different
conditions data items using independent conditions data
“folders” (i.e. different relational tables, for instance
because they require different payload schemas), but also
as different “channels” in the same folder (i.e. within the
same relational table, but identified by different values of
a channel number column).

In the LCG conditions database project, these three
issues were all first addressed by the “extended API” of
the MySQL implementation [6]. COOL also implements
solutions to provide the flexibility required in all these
areas: differently from the previous MySQL package,
however, COOL treats these issues as minor variations of
the same basic metadata model for conditions data. In
practice, whenever possible it is strictly the same COOL
implementation code that is executed to handle conditions
data of different types, whether associated to CLOB or
multi-column payloads, relative to single-channel or
multi-channel folders, single or multi version. The use of
this single consistent approach has been one of the key
reasons why these functionalities could be provided by
COOL as early as in its first release 1.0.0.

Emphasis on performance
Keeping in mind the large data volumes and especially

large data rates expected for the LHC experiment
conditions data, as well as the inadequate performance of
the previous Oracle conditions database implementation,
data insertion and retrieval performance has been taken
into account in the design of the COOL API and
implementation right from the start. In particular, COOL

provides mechanisms to store and retrieve several
conditions data objects at the same time, through the use
of bulk relational updates with bind variables, and of row
pre-fetching in relational queries. Particular attention is
also paid to the design of the relational schema, to ensure
that the appropriate execution plan is used for queries and
updates thanks to the presence of all relevant indexes.

While many significant optimizations are still needed,
both in the internal C++ management of data buffers on
the client side and in the client-server and server-side
handling of SQL queries, the performance measured so
far is satisfactory. A simplified version of the important
Atlas “first-pass event reconstruction” use case, in
particular, has been successfully validated [13]: the
expected sustained data rates of 20 MB/s, representing
20k conditions data objects per second, have been met for
retrieval from an Oracle RAC cluster database.

STATUS AND PERSPECTIVES
One year and a half after the start of its development, as

the LHC start-up gets closer, the focus of the COOL
project is rapidly moving from functional enhancements
to deployment issues in Atlas and LHCb. Its integration
within the software frameworks of the two experiments is
already well advanced, as reported in other presentations
at this conference [10-12]. The relevant database services
are being deployed and tested in the context of the 3D
project, in collaboration with the CERN IT-PSS team at
CERN and the local database experts at the other Tiers. In
Atlas, the phasing out of the old MySQL implementation
will be completed during 2006, with the migration to
COOL of the conditions data from the 2005 test beams.

As these activities advance, the COOL development
team is progressively concentrating on deployment-
related issues. The integration into COOL of the CORAL
advanced connection management features [16,20], such
as database replica lookup and connection retrial, has
been completed in the latest COOL release 1.3.0 (April
2006), while the future integration of the CORAL client-
side database monitoring is also foreseen.

Several performance optimizations are also still needed,
as previously observed. As the software provides the
flexibility to address rather different use cases, such as the
single-version and multi-version data models, separate
performance tests are required for the many supported
modes of operation, sometimes leading to separate
optimizations of the relational queries and updates. In
particular, optimizations for the bulk insertion of
conditions data objects into separate channels of the same
folder will be added in one of the next COOL releases.

Data replication is also one of the highest priorities for
the near future. Support for the FroNtier [21] multi-tier
data access mechanism will soon be prototyped, allowing
the retrieval of conditions data stored in a remote Oracle
server as http pages which can be cached in middle tier
Squid proxy caches. As previously observed for SQLite,
this task will be simplified by the fact that FroNtier is
already supported by CORAL. Tools for the “dynamic”
replication of COOL databases at the C++ level have also

been requested, to copy to the target database only data
inserted into the source database after the last replication.

Finally, even if the emphasis has shifted towards
deployment issues, the development of new functional
enhancements in COOL is still far from finished. In the
latest release 1.3.0, for instance, support has been added
for the “hierarchical versioning” (HVS) of conditions data
trees, along the same design that was first proposed in
collaboration between the LCG conditions database and
the Atlas detector description projects, and which has long
been implemented in production by the latter [21].

 REFERENCES
[1] COOL - The LCG Conditions Database Project,
http://lcgapp.cern.ch/project/CondDB/
[2] Objectivity Database, http://www.objectivity.com
[3] Oracle Database, http://www.oracle.com
[4] MySQL Database, http://www.mysql.com/
[5] I. Gaponenko et al., “Using Multiple Persistent
Technologies in the Conditions Database of BABAR”,
these proceedings
[6] A. Valassi et al., “LCG Conditions Database Project
Overview”, proceedings of CHEP04, Interlaken
(September 2004) and references therein
[7] A. Valassi, “Conditions Database Project Status and
Direction”, LCG AA meeting (October 2004)
[8] A. Amorim, “Time and Storage Patterns in
Conditions: Old Extensions and New Proposals”, LCG
AA meeting (October 2004)
[9] SQLite Database, http://www.sqlite.org/
[10] A. Vaniachine et al., “Database Access Patterns in
the ATLAS Computing Model”, these proceedings
[11] M. Verducci et al., “Conditions Database and
Calibration Software Framework for ATLAS Monitored
Drift Tube Chambers”, these proceedings
[12] M. Clemencic et al., “The LHCb Conditions
Database Framework”, these proceedings
[13] A. Valassi et al., “COOL Performance and
Distribution Tests”, these proceedings
[14] D. Duellmann et al., “LCG 3D Project Status and
Production Plans”, these proceedings
[15] CORAL – Common Relational Abstraction Layer,
http://pool.cern.ch/coral/
[16] I. Papadopoulos et al., “CORAL, a Software System
for Vendor-neutral Access to Relational Databases”, these
proceedings
[17] P. Mato, “Common Application Software for the
LHC Experiments”, these proceedings
[18] S. Roiser et al., “Reflex, Reflection for C++”, these
proceedings
[19] ROOT – An Object-Oriented Data Analysis
Framework, http://root.cern.ch/
[20] A. Vaniachine et al., “ATLAS Distributed Database
Services Client Library”, these proceedings
[21] L. Lueking et al, “FroNtier: High Performance
Database Access Using Standard Web Components in a
Scalable Multi-tier Architecture”, proceedings of
CHEP04, Interlaken (September 2004)
[22] V. Tsulaia et al., “Software Solutions for a Variable
ATLAS Detector Description”, these proceedings

