
Using Java Analysis Studio as an interface to the Atlas Offline Framework

J.Hrivnac, LAL, Orsay, France

Abstract

Huge requirements on computing resources have made
it difficult to run Frameworks of some new HEP exper-
iments on the users’ personal workstations. Fortunately,
new software technology allows us to give users back at
least a bit of the user-friendliness they were used to in the
past. A Java Analysis Studio (JAS) plugin has been devel-
oped, which accesses the Python API of the Atlas Offline
Framework (Athena) over the XML-RPC layer. This plu-
gin gives a user the full power of JAS over the resources
otherwise only available within Athena. A user can access
any Athena functionality and handle all results directly in
JAS. Graphical adapters to some Athena services have been
delivered to ease the access even further.

ATHENAEUM

Athenaeum[1] is a Java Analysis Studio (JAS)[2] plu-
gin which allows to access (remote) XML-RPC[3] Server.
It is currently used to access Python Server running as
a part of the Atlas offline Framework - Athena[4]. Any
Python script can be send directly from JAS to Athena. Re-
sults (usually in XML) are send back and can be processed
within JAS. Special Python scripts are provided to automat-
ically present some standard Athena data within JAS. See
Fig. 1 for the overview of the Athenaeum Architecture.

Figure 1: Athenaeum Architecture.

Connection between Athenaeum plugin and Athena
server is made over encrypted XML-RPC channel. Python
Server running inside Athena has been implemented by the
Atlantis[5] team, it can be easily started at any moment of
the Athena Python process.

Remote Script

Any Python script can be send from Athenaeum to the
running Athena. Its results (either a plane text or an XML
fragment) are automatically send back and can be pro-
cessed using the standard JAS mechanisms.

User can mix Python running within JAS and Python
running in a (remote) Athena. Athena Python scripts could
be moved to JAS.

Record Source

JAS with Athenaeum plugin can steer Athena Event
Loop, interpreting Athena as a Record Source. Processing
functions or classes can be then written which are called
for each event delivered by Athena.

REMOTE PROXY

For some specific Athena data structures, Proxies have
been created to provide their customized automatic presen-
tation. Those Proxies are in general implemented by:

• Athena Python script to extract data from Athena.

• JAS wrapper to present/handle data inside JAS.

• XML schema to describe data.

See Fig. 2 for the overview of the Proxies Design.
Because implementing pre-defined interfaces from

Athenaeum, those Proxies will make themselves automati-
cally available inside JAS system in an organic way. They
will, for example, appear on the appropriate menus.

XML SCHEMA REPRESENTATION

Because the same data are shared between different
Frameworks/Applications implemented in different lan-
guages (Java, Python, C/C++), its common definition is
needed. An XML Schema has been written describing
some common Athena data structures. All data representa-
tions are then automatically derived (generated) from that
XML Schema. The whole mechanism is described on the
Fig. 3.

INTERACTION WITH COOL

Cool[6] is a Conditions Database developed by CERN
LCG[7] project. It is available only via its proprietary
API which makes access to it from independent applica-
tions (like JAS) difficult. Athenaeum offers a way to access



Figure 2: Construction of Proxy.

Figure 3: XML Schema Representations.

Cool databases using Athena Python component. Specific
Athenaeum proxies have been written to make that connec-
tion automatic.

See Fig. 4 for an example of the running Cool Browser.
Cool data are received in an XML form. They can be

then represented in several ways:

• Directly as XML fragments.

• As derived Objects of several kinds.

• As a graphical Tree of elements.

• As a set of (AIDA)[8] NTuples.

• As an HTML page created using XSLT stylesheet.

All those data can be accessed via JAS Graphical Interface,
using scripting interface in several languages (Java, Python,
Pnuts) or directly from Java or Python.

DISTRIBUTED INTERACTIVE
ENVIRONMENT ARCHITECTURE

PROJECT

Athenaeum is a component in a planned Distributed In-
teractive Environment (see Fig. 5). In this environment,
user will interact with the Framework using lightweight
client (JAS) and all data will accessed using a network of
Virtual Servers connecting to actual databases. All data
will be described by the application and language neutral
XML Schema.

Other components of the Architecture are
SQLTuple[9]/ColMan[10] and Sequoia[11].

ARCHITECTURE ADVANTAGES

Presented Architecture has many advantages:



Figure 4: CoolBrowser.

Figure 5: Distributed Interactive Environment Architecture
Project.

• Light local client (JAS): It runs on any release of any
platform. It offers fully interactive GUI, scripting and
API in several languages. It is easily extensible by
modular plugins.

• Server on a powerful machine: It can be close to data,
replicated and hierarchised when useful.

• Standard communication protocols: Efficient XML-
RPC connection is used for the Control Flow
and small data. More performant protocols (like

JDBC[12], xrootd[13],...) can be used if bigger data
flow is needed.

PROBLEMS

Interacting with framework based on proprietary inter-
faces poses several problems. In the case of connection on
LCG-based Athena, following limitations are most serious:

• Python API to Athena is incomplete. Only a subset
of C++ Athena API is available via Python. The API
is undocumented. The C++ documentation created by
Doxygen[14] is not enough for documentation of its
Python API. It is not easy to guess the meaning of
weakly-typed methods. Available code fragments on
Web/Wiky are often out-of-date. The API is also very
unstable, there are too many change too often.

• No abstract data definition is available. The actual
data model is hidden very deep in the C++ header files
forest. Athenaeum XML Schema has been written for
data passed around. XML, Java, Python and C++ in-
carnations can be created from them.



PLANS

The work on the Athenaeum will continue. Several sub-
jects will be attacked in the near future:

• Athenaeum will be generalized to be usable with other
Monolithic Frameworks within HEP.

• Lazy and Compressed data transport will be supported
to speed operations up.

• User will be able to supply customized XSLT
stylesheet.

• More standard Proxies will be delivered.

• A possibility of the Athena startable remotely from
Athenaeum will be investigated.

• A deployment of Athena Servers network will be stud-
ied.

REFERENCES

[1] http://home.cern.ch/hrivnac/Activities/Packages/Athenaeum,
https://uimon.cern.ch/twiki/bin/view/Atlas/HowToUseJAS

[2] http://jas.freehep.org/jas3

[3] http://www.xmlrpc.com

[4] http://atlas.web.cern.ch/Atlas/GROUPS/SOFTWARE/OO/architecture/General

[5] http://atlantis.web.cern.ch/atlantis

[6] http://lcgapp.cern.ch/project/CondDB

[7] http://lcgapp.cern.ch

[8] http://aida.freehep.org

[9] http://home.cern.ch/hrivnac/Activities/Packages/SQLTuple

[10] http://home.cern.ch/hrivnac/Activities/Packages/ColMan

[11] http://sequoia.continuent.org/HomePage

[12] http://java.sun.com/products/jdbc

[13] http://xrootd.slac.stanford.edu

[14] http://www.stack.nl/ dimitri/doxygen


