WEB SERVERS FOR BULK FILE TRANSFER AND STORAGE
A. McNab, S. Kaushal, Yibiao Li, University of Manchester, UK

Abstract

GridSite has extended the
webserver for use within Grid projects, both by adding support
for Grid security credentials such as GSI and VOMS, and with
the GridHTTP protocol for bulk file transfer via HTTP. We
describe how GridHTTP combines the security model of
X.509/HTTPS with the performance of Apache, in local and
wide area bulk transfer applications. GridSite also supports file

industry-standard ~ Apache

location within storage farms, and we explain how this has been
implemented within Apache using the HTCP protocol, and the
client-side commands and toolkit we have provided for
applications.

INTRODUCTION

The GridSite Project[1] has developed a security toolkit,
libgridsite, and a set of extensions to the Apache[2] web server
to support Grid security credentials, authorization policies based
on them, and read/write file operations.

Another paper[3] presented at this conference has summarised
the Grid Credential processing and Access Control aspects of
the GridSite Framework. In this paper, we describe how that
framework can be used to provide bulk file storage with fine
grained, virtualised access control, and how it has been extended
to support HTTP transfers of large files with an unencrypted
data stream, and third-party transfers of files between remote

servers via HTTP(S).

FILE STORAGE

Web Servers such as Apache already provide access to files
via the HTTP[4] protocol, either over unencrypted TCP or
encrypted using TLS[S]. HTTP provides a GET method, which
allows files, or byte-ranges of files, to be retrieved. GridSite's
policy driven access rights model allows this to be limited to
clients with the appropriate X.509[6], GSI[7] or VOMSI8]
identity or group membership credentials.

The HTTP and WebDAV[9] specifications also describe
methods which alter files on a server: PUT, DELETE and
MOVE. Traditionally, these are not implemented by web
servers, due to the lack of an appropriate access control model.
GridSite's mod_gridsite shared object extension adds support for

these methods directly to the Apache server, with rights covered
by GridSite's policy engine described previously.

This combination allows the web server to be used as a
read/write file server, equivalent to FTP, but using credentials
relevant to Grids, and without the need to use underlying Unix
accounts to control which users have access to which files: this
is entirely determined by the policy files covering the directory
or hierarchy of directories in question.

Since the combined Apache/GridSite servers are based on
existing standards, they can be access in read or write mode
using web clients from the mainstream web development
community, such as the curl[10] command line tool.

To further simplify the use of these servers, we have also
produced a family of command line tools, modelled on the scp
command of OpenSSH[11]. htcp provides file copying to and
from remote HTTP(S) servers; htrm allows remote files to be
deleted; htmv provides renaming of files; and htls uses remote
directory listings to display a list of files in the same format as
the Unix Is command, with file size and datestamp information
taken from the HTTP header values.

“GRIDHTTP”

The model described so far only permits access control on the
basis of credentials supplied by an HTTPS request. This means
that files will then be transmitted over encrypted TLS channels.
For bulk file transfers, the encryption overhead may be
inappropriate, and an uncrypted data stream is required.

To provide this we have developed the GridHTTP profile for
using HTTP: this does not involve deviations from existing
HTTP standards, but describes how to use existing headers and
methods to produce an encrypted data stream.

First, an HTTPS request is made for the file, with an Upgrade:
header present. This includes the protocol string GridHTTP/1.0,
and alerts GridSite servers that an unencrypted data stream is
required.

If the client has the correct rights to access the file in question,
the server issues an HTTP redirect from the HTTPS URL to an
HTTP URL (corresponding to an unencrypted channel.) The
redirect response includes a HTTP cookie, which a onetime
passcode which the client must supply to obtain the file over
HTTP.

The client obeys the redirection (which is the default behaviour
for htep, and is readily achieved with a command-line option in
curl) and presents the onetime passcode to gain access.

When the server receives the passcode over an unencrypted
stream, the passcode is marked as no longer valid and it cannot
be used for subsequent requests.

This model shares the vulnerability to “man in the middle”
attacks which all unencrypted data stream protocols face (such
as The Globus Project's[12] GridFTP), but is resistant to replay
attacks due to the onetime nature of the passcode.

THIRD-PARTY TRANSFERS

When managing bulk files it is frequently necessary to
transfer files between remote servers, but it is inefficient to do
this via the machine which is orchestrating the transfer. (For
example, if the management machine is a user's notebook
computer on a poor network connection.)

Consequently, systems such as GridFTP support so-called
“third party transfers” between remote sites, with control
channels between the management machine and the data servers,
and a data channel for the transfer of the large files themselves.

The WebDAV HTTP specification also defines a COPY
method which can transfer files between two remote URLSs, and
we have implemented this as a CGI program supplied with
GridSite, gridsite-copy.cgi. When presented with a copy request
from the management machine, the gridsite-copy.cgi program
on one of the data servers attempts to fetch the remote file via
GET and place it on its own file space. Both GET and the local
file operations are controlled by GridSite's fine grained access
control model.

However, in doing this, the gridsite-copy.cgi instance must
somehow be associated with the user who is orchestrating the
transfer, and be able to prove this to the data server with the file.
Some form of delegation is needed.

Previously, we have investigated using GSI proxy delegation
for this purpose, but following the development of our
GridHTTP profile, with its onetime passcodes, we have
implemented gridsite-copy.cgi using a much simpler
authentication process.

To perform a third-party transfer, the user's management
machine makes a GridHTTP request to the data server with the
file, as described above, using HTTPS and supplying their Grid
credentials (X.509 certificate or GSI proxy, plus VOMS
attriutes if present.) Instead of following the redirect to the
HTTP server itself, the management machine then issues a
COPY request to the other data server, using the onetime
passcode it has received and the HTTP URL. Since this COPY
is also transmitted as an encrypted HTTPS request, the onetime
passcode is still not revealed, and can be used again by the
gridsite-copy.cgi program which receives it. (In this way, we
define “one time use” as one use of the passcode over an
unencrypted HTTP channel.) gridsite-copy.cgi can then issue
the GET itself, using the passcode, as if it had made the initial
GridHTTP request.

Again, because this protocol is merely a profile based on
existing standards, it can be used by standard command line
clients such as curl, if the correct arguments are given. For
simplicity, it is also supported by our htcp command line tool.

SITECAST FILE LOCATION

As well as the transferring large files, it is also necessary to
locate them. As more large are deployed with the majority of
their disk space on the CPU nodes, such as the Tier-2 facility at
the University of Manchester [13], the file location problem is
becoming similar to the problem of finding files on farms of
web servers or web caches.

With this in mind, we have adapted the Hypertext Caching
Protocol[14] (HTCP — not to be confused with the GridSite htcp
command) to provide a file location system.

HTCP queries are short, binary messages, which can readily
be transmitted over UDP. By using UDP multicast, we are able
to query all data servers in parallel.

We have implemented a UDP responder as part of the
mod_gridsite Apache module, and this simply queries the
underlying Unix filesystem to determine the presence or
absence of the file. Using a 3GHz Pentium IV processor
machine, we are able to receive replies within less than 1ms of
elapsed time, due to the lightweight nature of UDP and the
simplicity of the filesystem query (a call to the Unix stat()
function.)

The client side of this SiteCast system is implemented as
part of htcp, and allows files to be copied from virtual site-wide
URLs to the local machine: htcp makes a SiteCast query to find
one or more replicas of the file, picks the first host to respond
(which is likely to be the least loaded) and copies the file from
there to the user's filesystem.

Further additions are planned to this system, including a
POSIX interface for clients, and an SRM interface to allow
external queries to made to the site about the presence and
location of files.

A significant advantage of the system is that no central
database of all files is needed, and there is no danger of such a
database becoming out of synchronisation with the files present
on data servers, as GridSite creates new copies of files
atomically (by writing to a temporary file and then renaming
the file atomically when the transfer is finished.) Furthermore,
offline data servers automatically remove their replicas of files
from then location system, by simply not being able to respond
to SiteCast queries. Finally, IP multicast messages can be
limited to groups of machines, which machines subscribe to,
and other groups can frequently be filtered out at the lower
levels of network cards and their drivers. Many IP routers also
allow filtering and routing of multicast packets, and this may be
used to partition sites, or join sites together to form virtual data
server pools.

CONCLUSION

GridSite provides a flexible framework for managing access to
web servers using common Grid credentials. This system can
now be used for providing secured read/write file servers, with
the option to transfer files via unencrypted data streams and by
third-party transfers between remote GridSite servers.

The SiteCast protocol allows files to be located within a site,
without the need for heavyweight databases or headnodes, since
the work of responding to the query is carried out in parallel by
all machines within the relevant multicast groups.

REFERENCES

[1] http://www.gridsite.org/.

[2] http://www.apache.org/.

[3] A. McNab et al, “Web Services with GridSite and
C/C++/Scripts”, Proceeding of CHEP 2006, Mumbai,
India, 2006.

[4] IETF RFC 2616, “The HTTP Protocol”,
http://www.ietf.org/rfc/rfc2616.txt

[5] IETF RFC 2246, “The TLS Protocol”,
http://www.ietf.org/rfc/rfc2246.txt

[6] IETF RFC 3280, “Internet X.509 Public Key Infrastructure
Certificate and Certificate Revocation List (CRL) Profile”,
http://www ietf.org/rfc/rfc3280.txt

[71 IETF RFC 3820, “Internet X.509 Public Key Infrastructure
(PKI) Proxy Certificate Profile”,
http://www.ietf.org/rfc/rfc3820.txt

ACKNOWLEDGEMENTS

This work was funded by the UK Particle Physics and
Astronomy Research Council, as part of the GridPP project and
the e-Science Studentships programme.

The design of the GridHTTP and SiteCast systems benefited
greatly from discussions with Dr M. Jones and Dr A. Forti, both
of the University of Mancheser.

[8] R. Alfieri et al., Managing Dynamic User Communities in
a Grid of Autonomous Resources, TUBTO00S - Proceedings
of CHEP 2003, 2003.

[9] IETF RFC 2518, “HTTP Extensions of Distributed
Authoring — WebDAV”,
http://www.ietf.org/rfc/rfc2518.txt

[10] The Curl project, http://curl.haxx.se/

[11] The OpenSSH project, http://www.openssh.com/

[12] The Globus Project, http://www.globus.org/

[13] A. Forti and A. McNab, “Cluster distributed dynamic
storage”, Proceedings of CHEP 2006, Mumbali,
India, 2006.

[14]IETF RFC 2756, “The Hypertext Caching Protocol”,
http://www.ietf.org/rfc/rfc2756.txt

