
PROOF - The Parallel ROOT Facility

B. Bellenot, R. Brun, G. Ganis], J. Iwaszkiewicz, G. Kickinger, A.J. Peters, F. Rademakers
CERN, Geneva, Switzerland

M. Ballintijn, C. Loizides, C. Reed, MIT, Cambridge, MA, USA
P. Canal, FNAL, Batavia, IL, USA

D. Feichtinger, PSI, Villingen, Switzerland
]Contact: gerardo.ganis@cern.ch

Abstract

The Parallel ROOT Facility, PROOF, enables the inter-
active analysis of distributed data sets in a transparent way.
It exploits the inherent parallelism in data of uncorrelated
events via a multi-tier architecture that optimizes I/O and
CPU utilization in heterogeneous clusters with distributed
storage. Being part of the ROOT framework PROOF in-
herits the benefits of a performant object-oriented stor-
age system and the wealth of statistical and visualization
tools. Dedicated PROOF-enabled testbeds are now being
deployed at CERN for testing by the LHC experiments.
This paper describes the status of PROOF, focusing mainly
on the recent and ongoing developments.

INTRODUCTION

The Parallel ROOT Facility, PROOF, is an extension of
the ROOT system [1] aiming to provide users with a tool
to run transparently, and interactively, their ROOT analysis
jobs on potentially large clusters, hiding the cluster com-
plexity behind the same API and syntax as for local ROOT
sessions.

The PROOF principles and benchmark results have been
presented before [2]. We just remind here that PROOF
achieves its goals by implementing a flexible multi-tier ar-
chitecture, the main components being the client session,
the master server, and the worker servers. The applications
running in the master and worker nodes are real ROOT
sessions forked via dedicated daemons. Support for run-
ning on a network of geographically separated clusters (the
Grid) is provided by allowing a hierarchy of masters, with
a super-master serving as entry point in the system, and the
others coordinating the activities of the worker nodes on
their respective clusters. The master is responsible for dis-
tributing the work using a pull architecture such that worker
nodes ask for more work as soon as there are ready. In this
way the faster worker nodes are assigned more data to pro-
cess than the slower ones and load balancing is naturally
achieved. The master is also in charge of merging the out-
put it collects from the worker nodes, so that the client re-
ceives a single set of output objects, as would have been
the case for local processing.

The end-user analysis case addressed by PROOF is the
one typically found in HEP experiments, where the data are
collection of uncorrelated events. The solution provided by
ROOT for this use-case is shown in figure 1. The data are

organized in a hierarchical ”tree-like” data structure allow-
ing efficient access to only those ”leaves” containing infor-
mation relevant for the analysis. The analysis algorithms
are embedded in a framework providing a selector template
for automatic loop operations on the events; the user needs
only to implement functions for the initialization, process-
ing, and termination phases.

With samples containing uncorrelated events, basic par-
allelism is naturally achieved by splitting the whole sample
into sub-samples which can be analyzed concurrently.

For the analysis of the forthcoming data, the LHC collab-
orations foresee [3] the deployment of dedicated facilities
consisting of a few MSpecInts2K of computing power (cur-
rently achievable with a few hundred CPUs) and the data
available from a distributed storage system, e.g. CASTOR.

The standard approach to use these facilities is to instru-
ment them with a batch system, e.g. LSF. In this case,
the user exploits basic parallelism by splitting a big job
addressing the whole data sample, into several sub-jobs,
each one addressing a sub-sample of the data, submitted
independently and run concurrently, at least to the extent
allowed by the policy of the batch system. This classical
approach provides a somewhat static use of resources: any
change in the sub-sample definition requires cancellation
and re-submission of the corresponding job(s). Moreover,
real-time feedback functionality is not automatically pro-
vided, unless the job itself is instrumented to do so.

PROOF provides an alternative approach to achieve ba-
sic parallelism, resulting in a more dynamic use of the
available resources. The job is submitted as a whole and
the system takes care of splitting it in packets which size
depends of the worker performance. To minimize data
transfers, workers get assigned as much as possible data
replicated on their local disk. This provides a better use of
the resources for short and medium term queries, for which
the overhead from job preparation, submission, data access
and result merging may be substantial for batch systems.
In addition PROOF provides continuous real-time moni-
toring on the running jobs and better control on the tails
in the CPU-time distribution by allowing faster workers,
once idle, to take over the packets assigned to slower work-
ers. For long term queries, we expect PROOF to be sligthly
less efficient than the batch approach due to the overhead of
distributing packets (the corresponding inefficiency is esti-
mated to be of the order of 5-10%); the advantages of real-
time feedback and CPU-time ”tail” control will, however,



Figure 1: The ROOT model for data analysis.

remain.

During the last few years, PROOF has emerged from the
status of proof-of-concept to a status where experiments
can start using it for real work. In view of the approach-
ing of LHC real data, in Spring 2005 the ROOT team has
decided to start a new PROOF development cycle. The ini-
tial goal of this effort was to identify the main issues to be
addressed to bring PROOF to production level.

The remaining of this paper is devoted to the discussion
of these issues, starting with those for which a solution has
been already implemented.

RECENT ADDITIONS

Background mode and Stateless connection. In the
original design, PROOF was intended for strict interactive
usage: the idea was to bring medium term jobs (around
an hour) to a perceived length of a few minutes, typical
of the short queries usually accepted for interactive work.
For this reason, submitting a query blocked the ROOT ses-
sion in the same way as, for example, the processing of a
tree resident on the local hard disk did. However, the exact
definition of few minutes is subjective, and the user, who
is aware that the local machine is basically idle, may find
more convenient to continue processing the query in the
background, or even to detach from the session and come
back later to retrieve the results. These two options are now
available.

Support for the background mode has required a modi-
fication of communication protocol between the client and
the master to allow for asynchronous collection of the mes-
sages coming from the master in reply to client requests.
These modifications have also allowed to remove the lim-
itation to one PROOF session per ROOT shell, originally
present: it is now possible to operate concurrently PROOF
sessions on different clusters.

New communication layer based on XRD. Support
for disconnect/reconnect functionality has required a deep
change in the underlying connection layer on which the
cluster relies. The main reason is that in the original
PROOF the connection Client-to-Master was part of the
session state, strictly interconnecting the session and the
connection lifetimes. The solution that we implemented
required the introduction of a new logical component, the
PROOF server coordinator, keeping track of alive sessions
and representing the entry point to the cluster. After some
investigation we realized that xrd, the main component of
the XROOTD daemon [4], met most of the requirements
of the coordinator rôle in terms of connection handling and
message dispatching. As XROOTD is already distributed
with ROOT, we have designed and implemented a new xrd
protocol plug-in (XrdProofdProtocol) allowing a user to
start or reconnect to a PROOF session via xrd.

The new connection layer is shown in figure 2. Each
node runs an instance of the server coordinator; the coor-
dinator is in charge of forking a new PROOF server ses-
sion (proofserv or proofslave) and to control the message
flow between Client/Master or Master/Workers, dispatch-
ing the messages to the appropriate recipient. For each new
user, the coordinator creates internally an instance of Xrd-
ProofdProtocol; this instance owns the connections to the
client and to the PROOF servers associated to the user. Xrd-
ProofdProtocol allows for many client-like connections, so
that a client can connect to the same session from different
places, e.g. from the pit to control the ongoing processing.
Client connection can be closed and open at any moment,
even during processing. The overhead introduced by the
additional components has proven to be negligible.

The XrdProofdProtocol can be run concurrently with the
standard xrd protocol used for data serving. This makes
XROOTD the ideal candidate to manage the pool disks lo-
cal to the PROOF resources. Dedicated XROOTD config-
urations are being designed to optimally exploit this possi-
bility.



Figure 2: The new connection layer based on XROOTD [4]

Query handling. Concurrent query processing re-
quires a proper classification of the results of queries. For
this purpose we introduced a new class containing all the
information about the query, including the selector macro
in compressed form. Instances of this class for each query
run in the current or previous session are kept on the master
and can be retrieved - or archived to a ROOT file - at any
moment. A complete set of methods to handle the results
of queries has been added to PROOF client API.

Data-set handling. A data-set manager to handle the
definition, preparation and classification of the set of data
files to be analayzed, was another required addition. We
have recently implemented tools to facilitate the upload of
a set of files on the disk pool of the PROOF cluster. These
tools use the logical concept of data set to identify a set of
files; the meta-information about a data set is stored on the
master and can be retrieved at any time. Scripts to automat-
ically stage out data files via XROOTD are also available.

Session viewer. To deal with the increased functional-
ity of the PROOF API we developed a powerful graphical
user interface. Figure 3 shows a snapshot of the current
status of the GUI. The full PROOF client API can be con-
trolled via the session viewer. It is possible to select and run
scripts defining the data sets and prepare query submission
navigating in the appropriate directories. Feedback from
running queries can be monitored in real-time, by switch-
ing between query contexts with a simple click.

ONGOING DEVELOPMENTS
The main issues on which we are currently focusing are

the following: efficient scheduling in multi-user environ-
ment, access optimization to remote data and robustness
increase.

Multi-user issues. PROOF has been shown to perform
pretty well in scenarios where the number of users was lim-
ited to a few. However, when the number of users on the

assigned workers is such that the PROOF servers use a sig-
nificant fraction of the available resources, the many ses-
sions interfere with each other triggering continuous page
swaps considerably deteriorating the performances. It is
therefore necessary to introduce a way to control the use of
the available resources to guarantee the best response to all
users according to their priorities.

For this purpose we are developing a new component
- the scheduler - in charge of assigning resources to pro-
cesses representing different users basing the decisions on
the information about system load and in accordance with
the scheduling policy. The metric used to evaluate the pri-
ority of a certain query will be based on information on the
resources still needed by the query to be terminated, the
performance of the assigned workers, the amount of I/O,
the effective bandwidth per data server and the user profile
(history of previous submissions).

The new infrastructure based on xrd allows also more
flexibility in accessing and dispatching the required infor-
mation and in modifying on the fly the set of workers as-
signed on the query. The idea is that the scheduler will
regularly inquire the masters for the status of their queries
and dispatch instructions on how to proceed during the next
quantum of time.

Data Access issues. Although not specific to PROOF,
another problem already mentioned is the one of efficient
data access. In general, HEP analysis tend to be I/O bound.
However, at LHC, due to the large average number of tracks
in the events, the fraction of time spend in data elaboration
may, in general, be important.

As discussed in detail in [5], in such a case, using
caching techniques in conjunction with asynchronous pre-
fetching techniques, it is possible to reduce significantly the
latency in accessing a data segment. Under certain circum-
stances, depending on the fraction computing time and the
effective network bandwidth, it is possible to reach latency
values similar to those observed for local access.

Additional improvements could come from the detailed
knowledge of the segments needed by the analysis job in



Figure 3: The session viewer can be used to control multiple PROOF sessions.

the next steps. This information is available from the tree
headers. The integration of the techniques discussed in [5]
with the ROOT tree information is in progress.

Robustness. To be reliable, a complex distributed sys-
tem needs to react to fault situations in a rock-solid way,
allowing the client to always have the situation under con-
trol. The protocol of the XROOTD client-server connection
allows already more flexibility in treating error conditions.
In addition we plan to fully exploit the parallel control net-
work provided by XROOTD, to be able to monitor contin-
uously and independently the status of the PROOF servers
and also of the coordinators, and to take the appropriate
actions.

AoB. Current activities also include the development
of an operations monitoring system using MonALISA [6],
for which an advanced prototype is being tested, and the
addition of worker self-announcing functionality, which
could also be used to implement a certain degree of self-
healing.

Test-bed facilities. These developments are tested on
dedicated testbeds provided by CERN/IT. Larger test anal-
ysis facilities are being setup at CERN and IN2P3-Lyon
which will be instrumented with PROOF for testing and
validation mostly for the ALICE and CMS experiments.

PROOF is being used since quite sometime at MIT for
the analysis of PHOBOS data [7]. Recently interest has
also raised within the CMS collaboration [8].

CONCLUSIONS
The PROOF system provides an alternative approach for

end-user analysis on the foreseen Tier 2 /Tier 3 facilities
with the aim is to improve the response and transparency
for short and medium term queries. There is also a plan

to use PROOF for prompt analysis of hot channels on the
large Central Analysis Facility foreseen at CERN [3].

In the last year a large effort has been put in the project.
A new connection layer has been introduced base on
XROOTD and many new functionalities added to the API.
While several important development are still in progress,
test facilities have been setup at CERN and start to be used
by the experiments. This is expected to provide the neces-
sary feedback to bring the system to the level of robustness,
flexibility and user-friendness needed by a real analysis fa-
cility.

REFERENCES
[1] René Brun and Fons Rademakers, ROOT - An Object Ori-

ented Data Analysis Framework, Proceedings AIHENP’96
Workshop, Lausanne, Sep. 1996, Nucl. Inst. & Meth. in Phys.
Res. A 389 (1997) 81-86. See also http://root.cern.ch/.

[2] M. Ballintijn et al., The PROOF Distributed Par-
allel Analysis Framework based on ROOT, Proc.
CHEP03 Intl. Conf., La Jolla, California, Mar. 2003,
http://arxiv.org/abs/physics/0306110; M. Ballintijn et al., Su-
per Scaling PROOF To Very Large Clusters, Proc. CHEP04
Intl. Conf., Interlaken, Switzerland, Sep. 2004.

[3] For the computing models of the LHC experiments see: AL-
ICE Coll., CERN-LHCC-2005-018; ATLAS Coll., CERN-
LHCC-2005-022; CMS Coll., CERN-LHCC-2005-023;
LHCb Coll., CERN-LHCC-2005-019; LCG Project, CERN-
LHCC-2005-024.

[4] http://xrootd.slac.stanford.edu

[5] See presentations at this conference by F. Furano, abstract
#368, and A. Hanushevsky, abstract #407 .

[6] http://monalisa.cacr.caltech.edu/monalisa.htm

[7] M. Ballantijn, presentations at this conference, abstract #374

[8] I. Gonzalez, presentations at this conference, abstract #267


