3D Graphics viewers in ROOT

R. Brun, O. Couet, R. Maunder, CERN, Geneva, Switzerland
T. Pocheptsov, JINR, Dubna, Russia
Abstract
ROOT [1] is an object-orientated framework for large scale data analysis. Users need 3D viewers to visualize static structures and animated objects – in the context of HEP these are detectors geometries and particle events. This document describes the latest developments in the ROOT 3D graphics era.
Common architecture
To support our new OpenGL [2] viewer, as well as 2D graphical device interface and legacy X3D viewers, we implement a generic 3D viewer architecture consisting of:

· TVirtualViewer3D interface. It is used to test the viewer preferences and capabilities, and to add objects in the scene (including composite objects).

· TBuffer3D class hierarchy, used to describe 3D objects ("shapes"). As a base class it is sufficient for any object in raw tessellation form. It has subclasses for abstract shapes (spheres/tubes etc). It is filled “by negotiation” with viewer for efficiency.
Figure 1: General architecture

NEW viewer

For modern HEP detector visualization we require a viewer capable of handling:

· Very large static geometries composed of up to 10 millions of volumes, with types ranging from simple boxes to complex boolean solids.

· Animated particles, tracks and activated detector parts - energy deposits etc. - up to ~1,000,000 objects, represented by lines, simple shapes spheres etc.

· Combination of events placed in context of (simplified) cut detector geometries.

[image: image1.png]

Additionally it must support:

· High performance and quality interactive viewing.

· Variety of projections – perspective, orthographic, special fisheye / non-linear.

· All ROOT platforms – Win32, Linux, MacOS, Solaris, etc.

· Taking advantage of hardware where available.

· Output to screen bitmap and vector files (PDF/PostScript), video (animation).

For all these reasons, OpenGL base is the obvious choice.
GL Viewer Architecture

Scene Structure
Internally the GL viewer consists of a common scene object (TGLScene) which can be shared and synchronized across viewers. This scene consists of:

i. A collection of local reference frame template shapes (TGLogicalShape).

ii. A collection of world frame placements (TGLPhysicalShape), each of which references a template shape.

The physical shape’s Draw() methods load the “shape’s world” to “local frame” translation matrix, and then ask the associated logical shape to draw. This enables efficient handling of the very high level of shape repetition found in detector geometries and events – e.g. a typical detector may have several millions placements of only a few thousand unique shapes.

Both of these shape types support unique identifiers, enabling lazy caching of template, with associated expensive tessellation, during rebuild of the scene.
Scene Rebuilds
Given the potential size of the geometry structure it is impossible to simply fill the scene with the millions of drawable objects – the memory requirements alone would be excessive even on a modern PC. Instead we need to selectively accept into the scene objects which are ‘of interest’ to the viewer, offered by an external client (a compact geometry manager typically).
An object is considered ‘of interest’ if it falls within an expanded box, encompassing the true camera limits, and the object’s bounding box has a significant length or volume ratio compared with the camera box. The viewer can also indicate to the external client that contained children of last added object are not of interest – enabling efficient termination of a contained geometry branch.

The viewer can prompt the external viewer client to republish objects to the viewer if camera configuration changes significantly – e.g. the true camera limits move outside the previous interest box, or there is a significant zoom action.

Gl viewer performance

The GL Viewer implements the following performance related features:

Camera frustum culling: Don’t draw shapes falling outside the camera limits.

Level of Detail: Vary quality of shape’s draw (tessellation) based on projected size on screen. In extreme cases a shape can be represented by a single pixel.

Display List Cache: Automatically ‘compile’ low level drawing instructions into an efficient OpenGL cache item, which can be drawn subsequently at higher speed. With the hardware support, the cache item can remain memory resident on the graphics card, giving very much higher performance.

Multi-pass Renders: During interaction (camera moves etc) the drawing time is limited to 100msec, with reduced level of detail. The shapes are drawn from largest to the smallest, so the drop outs due to time limit are less noticeable. When the interaction stops a final unlimited, full detail drawing is performed.

To support level of detail, individual shapes must be tessellated natively within the GL viewer. Currently we support only spheres and tubes natively. More of these will be added in the future.

The combination of all these techniques can give typical speeds up of 10 – 20 times compared with naïve direct OpenGL draws.

Gl viewer FEATURES
Render Styles and Output: A variety of render styles are implemented, including wire-frame, filled/lit polygons, and ‘outline’ which combines these two. Output can be generated to screen and external vector based PostScript or PDF files.

[image: image11.emf]Producers

Consumers

TVirtualViewer3D

Events

Geometry

Viewer can terminate

sending of child objects

Viewer can prompt republishing of

objects when camera and/or time

change

GL Viewer

Internal GL Scene

(Database)

Logical Shape Cache

Physical Shape Cache

GL Display List Cache

TBuffer3D

TBuffer3DSphere

Figure 2: Render styles examples
Cameras: We currently implement three perspective cameras with constrained floor formed from a pair of world axis – these are useful for visualizing geometries where there is a natural ‘up’ direction. In addition orthographic projections with two world axes mapped to the horizontal/vertical screen directions are provided. In the future other more ‘exotic’ projections which are useful for event display will be implemented.
Manipulators: Manipulators provide in-place editing of geometric shapes – allowing direct translation, scaling and rotation about the shapes local axes. All physical shapes in the scene, and the current clipping shape, can be manipulated in this fashion.

[image: image2.png]

[image: image3.png]

Figure 3: Translation manipulator
[image: image4.png]

[image: image5.png]

Figure 4: Scaling manipulator
[image: image6.png]

[image: image7.png]

Figure 5: Rotation manipulator
Clipping: Using OpenGL clip planes, we can remove subsections of the scene revealing inner details of geometries.
[image: image8.png]

Figure 6: Clipping example

We currently provide a clipping plane and a clipping box both of which can be directly manipulated in the viewer, or configured via the GUI. Any shape composed of planes can be used as clipping tool. More of them can be used in the future.
[image: image9.png]

Figure 7: Clipping tool
Gl in pad

This extension aims to combine the best of the current ROOT 2D TPad graphics, with the 3D capabilities and performance of the GL viewer. This is achieved by combining the output via a common bitmap. In this way we can use the full range of 2D graphics (basic 2D primitives, multi-pads representation, user interaction with graphics, paper output, etc...) with 3D projections, lighting, shadows etc, and manipulate these views in real-time, taking advantage of OpenGL acceleration.

[image: image10.emf]
Figure 8: 3D surfaces are done with OpenGL text, axis and multi-pad management by the 2D basic graphics.
Future

Anticipated future developments in the OpenGL viewer include:

· 3D OpenGL merging with 2D graphical device interface should be completed
· More native (level of detail supporting) shapes for improved render performance and quality.

· Animation manager – to control cameras and objects (particles moving on tracks, detector activation etc.)

· Specific collections for animated particles/tracks for event display – to separate from static geometry and hence improve / simplify animation performance.

References

[1] http://root.cern.ch

[2] http://www.opengl.org/

