
For many physics analyses in ATLAS, reliable and efficient jet tagging algorithms are important.
A general jet tagging framework and its Event Data Model have been developed and implemented
into the ATLAS Athena offline reconstruction software. One of the guiding design principles of
these jet tagging packages is a strong focus on modularity and defined interfaces using the
advantages of the new ATLAS Event Data Model and object oriented C++.

The benefit for the developer is modularity in terms of easy expandability of the tagging software
with additional and different tagging algorithms. The user profits from a common look and feel of
all algorithms and also from an easy configurable jet tagging chain: turning on/off different taggers,
retagging on the fly just before the analysis and combining the results from various taggers with
hindsight during the analysis.

ig 1
 Schematic representation of a proton-proton collision. The
outgoing quarks hadronise into a bunch of collimated particles
called jets. The type of particle (quark, tau, ...) which caused
the jet is of interest for many physics analyses. In this case the
jet stems from a heavy b quark resulting in a jet topology con-
taining a secondary vertex and tracks with large impact
parameters.

Jet Tagging Process

F

ig 6
 Sequence diagram of the jet tagging process.
The top level JetTagBuilder steers the whole tag-
ging process. It calls the tools for truth matching,
track-jet association and combines the single re-
sults of the tagging tools to a more powerful
discriminant.

It can execute and arbitrary number of tagging
algorithms in an arbitrary order due to the use of
a common Event Data Model and a common
interface.

At the end of the tagging process the JetTag-
Builder stores the results to be used by other
algorithms and for permanent storage on disk.

F

The task of a general jet tagging framework
is divided into several steps. First of all, the
framework needs to define a common Event
Data Model for the tagging process. This
object has to be capable of storing the results
of existing taggers as well as those of future
tagging algorithms. Secondly, the framework
needs to define common interfaces for all jet
tagging algorithms such that they can be exe-
cuted by a higher level algorithm in any
possible order and number. In conjunction
with the Event Data Model, this common
interface guarantees a modular and extend-
able jet tagging environment. Thirdly, the
framework needs to provide a set of helper
tools which can be used by the top level or
the tagging algorithms to fulfill common jet
tagging tasks. Among these tasks are truth
matching of input jets, association of tracks to
input jets, input/output of reference histograms
and calculation of a discriminating variable.

ig 2
 The jet tagging process is split into several steps:
Preprocessing of input jets, tagging of jets and
combining the results (postprocessing).

F

Event Data Model

The ATLAS Event Data Model defines data objects
which are used during event processing. Tracks, jets
and calorimeter cells are some examples.

The JetTag object is the dataobject which stores all
information concerning the tagging process. Modu-
larity of the jet tagging software requires this object
to be flexible and extendable by design.

This is achieved with "info objects". The
ITagInfo base class defines the interface
and offers space for common tagging in-
formation: tag weight and likelihood.

Information unique to a specific tagging
algorithm is stored in derived classes.

The common interface of these objects
allow other tools to combine the tag
information of several taggers to a
more powerful one.

ig 3
 The JetTag object stores all
relevant tagging information.
Results produced by individual
tag algorithms is stored in a
vector of ITagInfo objects.

F

ig 4
 Every tagging algorithm fills an extended version
of an ITagInfo object with common and special tag
information. At the end it appends the object to the
ITagInfo vector of the JetTag object.

F

ig 5
 The common interface of all jet tagging tools is given to
them by a common base class. It provides only one method
which is used by the top level jet tagging algorithm to call
all tag tools.

F

Efficiency
50 100100

Re
je

ct
io

n

1

10

210

310

410

IP1D + IP2D
u-Jet
c-Jet
g-Jet

ig 7
 Impact parameter divided
by measurement error for b
jets and light jets.

F

ig 8
 Weight distribution for
b jets and light jets.

F

ig 9
 Rejection of light jets,
c jets and gluon jets as a
function of tag efficiency.

F

Andreas Wildauer, CERN PH-ATC and University of Innsbruck, on behalf of the ATLAS Inner Detector Software Group
Andreas.Wildauer@cern.ch

 : JetTagBuilder

 : StoreGate

Primary Vertex

Jet s

Tracks

Truth

JetTag

 : JetTagTool : TrackParticleAndJetMerger

5: matchJet()

7: tagJet()

9: simpleCombine()

3: retrieve()

1: retrieve()

 : IJetTruthMatching : TagTool1

2: mergeTrackWithJets()

8: tagJet()

10: record()

6: retrieve()

0: retrieve()

 : TagTool2

4: *tagJet()

 : TagCombination

The ATLAS JetTagging
Event Data Model

Introduction and Motivation

JetTagging Interface and Sequence Diagram

A modular jet tagging sequence is achieved by leting all tagging
algorithms inherit from a common base class. This class defines
the interface which is used by a top level algorithm to execute all
tagging algorithms.

JetTagging Example: b-Tagging

Primary Vertex

Proton Proton

Jet Jet

Secondary Vertex B

a0

LifetimeTag NewTagToolSecVtxTag

ITagTool

+ tagJet(tagJet : JetTag&)

JetTag

- m_tagJetInfo : std::vector< ITagInfo * >
- m_combinedLikelihood : vector< double >

+ combinedLikelihood() : const vector< double >&
+ tagInfo(const string& key) : const ITagInfo*
+ addInfo(tagJetInfo : ITagInfo*)

SecVtxInfo

- m_prob : double
- m_mass : double
- m_mult : int

+ probability() : double
+ mass() : double
+ mult() : int

LifetimeInfo

- m_trackSignificance : vector<double>

+ significance() : vector<double>&

ITagInfo

+ setTagLikelihood(const vector<double>&)
+ tagLikelihood() : vector<double>&
+ name() : const string

- m_tagJetInfoType : string
- m_tagLikelihood : vector<double>

All ATLAS b-tagging algorithms are implemented within this JetTagging framework.
Several b-tagging algorithms are run sequentialy by the top level BJetBuilder. Among
them are 1D and 2D impact parameter taggers, secondary vertex based taggers and soft-
lepton taggers. They all produce common tagging information (e.g. weight) but are also
free to store any specific information which is relevant for this tagger.

In case of b-tagging the signed impact parameter is often used to construct a discrimi-
nating variable (Fig 7). The JetTagging framework also offers tools to write and read
the histograms of these variables and to construct a weight or likelihood (Fig 8) which
can later be used by the physicist to distinguish between b jets and background jets.
The quality of the b-tagging is measured in terms of rejection of background jets for
a given selection efficiency of signal (i.e. b) jets. Common benchmark figures are a
light jet rejection of 100 with a selection eficiency of 60% (Fig 9).

rφ Impact Parameter/Error
-20

En
tr

ie
s

-510

-410

-310

-210

-110 b-jets
 u-jets

Weight

En
tr

ie
s

-510

-410

-310

-210

-110

0 20 40-20

0 20 40

Input

Preprocessing

Tagging

Postprocessing

Output

Jet

Track Jet Association

Jet Truth Matching

Tagging

Tag Combination

JetTag

 b-jets
 u-jets

