
National Energy Research
Scientific Computing Center
(NERSC)

Physics-Level Job Configuration

Wim Lavrijsen, Wolfgang Liebig
Paolo Calafiura, Peter Loch,
David Rousseau, Andreas Salzburger

CHEP – Mumbai, February 2006

Upcoming changes in Atlas

• Software priorities are changing
– Development => maintenance
–More physicist/end-users
• Writing analysis and running reconstruction

• Need to be ready for cosmics in 2007
– External and core software freeze early
– Deliver High Level Trigger software
– Understandability and usability
• Work environment, configuration, docs

Athena Component Model

Transient
Event Store

Converter

Algorithm

Event Data
Service

Persistency
Service

Data
Files

Algorithm

Detec. Data
Service

Persistency
Service

Data
Files

Transient
Detector
Store

Message
Service

JobOptions
Service

Particle Prop.
Service

Other
Services

Histogram
Service

Persistency
Service

Data
Files

Transient
Histogram

Store

Application
Manager

ConverterConverterEvent
Selector

Auditors
Scripting
Service

MC Event
Generators

StoreGate
Svc

Sequencer

Use of abstract interfaces to create
exchangable componens provides for
flexible development, but also means
many components in a single job.

Athena Configuration Model

Component
Instance

m_property3
m_property2
m_property1

/// Set the property by property
virtual StatusCode setProperty(const Property& p // Reference to the input property

) = 0;
/// Set the property by istream
virtual StatusCode setProperty(std::istream& s) = 0;
/// Set the property by std::string
virtual StatusCode setProperty(const std::string& n, const std::string& v) = 0;
/// Get the property by property
virtual StatusCode getProperty(Property* p // Pointer to property to be set

) const = 0;
/// Get the property by name
virtual const Property& getProperty(const std::string& name // Property name

) const = 0;
/// Get the property by std::string
virtual StatusCode getProperty(const std::string& n, std::string& v) const = 0;
/// Get list of properties
virtual const std::vector<Property*>& getProperties() const = 0;

IProperty Interface

Property
Manager

Configuration
associated with
component instance
and/or component
class + defaults.

Highly developer-centric!

Setup with python file
fragments, typically
organised per package,
and/or by use.

• More, specific, file fragments not enough
– Reside in developer pkg: wrong granularity
– Localizing fragments is in itself a problem
• As are mixing, matching, and multiple inclusions

• Solution is a three step process:
1) Provide smarter, low-level building blocks
• Automatically generated for all components

2) Provide structuring support
• Removes boiler-plate code from options files

3) Build higher level structures
• Driven by physics/developer community

Move to a user-centric model

1) “Configurables”

one python module per package, one python class per component
from AthExHelloWorld.AthExHelloWorldConfig import HelloWorldConfig

make a Configurable available only (no Athena-side configuration yet)
HelloWorld = HelloWorldConfig(“HelloWorld”)
HelloWorld.MyDouble = 6.6261 # <- can be immediately verified

HelloWorldConfig instance

MyStringVec

MyDouble

MyBool

MyInt MyDouble
Name: 'MyDouble'
Type: 'double'
Default: 3.14159
Doc: 'Very Interesting'

“Single” point of failure; pkg
structure only used for lookup;
fully mix&match safe.

1) Automatically generated

• <MyPackage>Config.py generated with:

$ genconf MyPackage # single script

– Assumes components in 'libMyPackage.so'
–Works for Algorithm, Service, & AlgTool

• Build-time Config.py generation:

$ cat <MyPackage>/cmt/requirements
[...]
apply_pattern genconf_run
[...]

1) Specialisation

• Derive from any class in <>Config.py
– Implement hook for specialization:

class MyClassSpecial(MyClassConfig):
def setUserDefaults(self, handle):
handle.special = specialValue

– Add dependent components in __init__
– Override other methods such as getDlls()
– Used like any other Configurable
– C++ style type checks help you get it right

2) Structure support

InDetSeq

CaloSeq

MuonSeq

TopSequence

CaloSeq

TileRec

JetRec

.....

All (component) configurables and can be
mixed, matched, duplicated, restructured,
etc. in sequences or in part as makes
sense “physically” speaking

JetKey

MuKey

Only Configurables associated
with TopSequence are set up
and make it into Athena RT

2) Pseudo-code: CaloSeq

def ConfigureCone4Jets(.., MinimumSignal = 10.*GeV, ..):
setup Cone4Jets with private tools
Cone4Jets = JetAlgorithmConfig(“Cone4Jets”)
FinalEtCut = JetSignalSelectorToolConfig(“FinalEtCut”)
FinalEtCut.UseTransversEnergy = True
FinalEtCut.MinimumSignal = MinimumSignal

[... other tools ...]
Cone4Jets += [..., FinalEtCut, ...]
return Cone4Jets

def ReconstructClusters():
sequence = AlgSequence(“Clusters”)

[... other algorithms ...]
sequence += ConfigureCone4Jets()
return sequence

topSeq += ReconstructClusters()
topSeq.Clusters.Cone4Jets.FinalEtCut.MinimumSignal = 20.*GeV

Structural placeholder.

Make a tree of Configurables:
explorable, modifiable.

End-user overrides always
take precedence.

3) Physics-level

• “Physics-level” different meaning ...
– ... for subdetector developer,
– ... for reconstruction coordinator,
– ... for member of heavy-Higgs group, etc.

• Several developer-user relations
– Each relation is a layer
– Users now work with logical blocks
• Provided by developer or “power-user”
• Guaranteed internal consistency
• Overrides possible for (temp!) workarounds

Summary & Outlook

• Atlas software is changing:
– development focus => analysis focus

• Configuration building blocks provided
– Auto-generated, checkable, independent

• Layered structures now possible
–With layered builders (functions/classes)
– End-user modifiable, exploration-safe

• Opens up possibilities for new tools
– Browsers, validators, code generators, etc.

Resources

• Ongoing documentation:
– https://uimon.cern.ch/twiki/bin/view/

Atlas/HighLevelJobConfiguration
– https://uimon.cern.ch/twiki/bin/view/

Atlas/PrototypeDataDrivenConfig
#Prototype_with_Configurable

