
SCHEDULER CONFIGURATION FOR MULTI SITE RESOURCE
BROKERING

L. Hajdu, J. Lauret
STAR, Brookhaven National Laboratory, Upton, NY 11973-5000

Abstract:

In the distributed computing world of
heterogeneity, sites may have from the bare
minimum Globus package available to a plethora
of advanced services. Moreover, sites may have
restrictions and limitations which need to be
understood by resource brokers and planner in
order to take the best advantage of resource and
computing cycles. Unfortunately, such information
is usually not provided by information services or
high level Grid services making the full
exploitation of optimal resources far from reach. In
this paper, we will discuss the evolution of the
layout of the configuration of the STAR Unified
Meta Scheduler (SUMS)[6] and will show how the
approach allows to take full advantage of any
available site as well as local resources in a
transparent and “universal” manner.

INTRODUCTION
In the distributed computing environment, one of

the most challenging tasks is the represent the rich
set of resources and capabilities of each and all
sites into a consistent picture so a high level service
could take into account these information for an
optimal decision making outcome. For a resource
broker or Meta-Scheduler (i.e. a wrapper around
multiple local or distributed resource management
systems), the challenge is to not only get this
information in-situ, but also be able to provide
ways to new sites to declare their resources and
become part of the Virtual Organization reachable
resources. Some of this information already resides
in information services and information providers
and schemas have been developed to represent the
fine granularity of the computing element and
storage element resources: The GLUE schema [5]
for example has such detail information, the
MonaLisa [1] retained historical information on
resources and load or the GridCat [3] catalogue
aims at providing a high level view of resource
usage. None provide a consistent and simple set of
information allowing however for a Meta-
Scheduler to understand the relationship between
computing resources, storage, network and services
allowed to communicate in or out of the worker

nodes, queue or pools and their mapping to those
resources or even the multitude of choices when it
comes to select one based on the user’s need or
privilege to use those resources (sometimes only
accessible by specific VOs). While the
configuration of a site is of the choice and
responsibility of a the site’s system administrator,
local queue policies and site restrictions should be
known as quickly and efficiently as possible to the
scheduler.

To this effect, the earliest as possible strategy
could be employed: in such approach, the
configuration of the software itself has to represent
to a usable granularity, available computing
resources, methods to access these resources as
well as methods to transmit in and out data sets
used for processing or as product of the jobs. This
should ideally happen without any user manual
intervention regardless of accessible sites. While
the target implementation presented here is carried
within the SUMS framework (a meta-scheduler or
wrapper providing access to both grid and local
scheduler), such idea has been independently
carried within other projects such as the SPHINX
scheduler [2] or the MAUI/MOAB scheduler to
some extent [9]. Our intent is to describe and
explain the scheme allowing a site to declare
information which combines into a consistent set of
parameters usable by a high level resource broker.
Such information is not specific to our Meta-
Scheduler and could be later expanded to a
resource information schema for wider use.

THE SUMS META-SCHEDULER
The STAR experiment, as many High Energy

and Nuclear Physics experiment, tend to have their
workload which could be qualified as
embarrassingly parallel: no particular effort is
needed to segment the problem into a large number
of parallel independent tasks allowing harnessing
the power of grids by “dismantling” large
computing requests into subsections that can be
apportioned to smaller computing elements within
the grid. However, apportioning of computational
load is a non trivial task as frivolous distributions
of load can yield longer turnaround in contrast to
using local resources. Strategies to overcome such

scenarios traditional require copious amount of
user intervention on the part of grid production
coordinators. Because of the heterogeneity that
exist among the resources being shared, the
“human” element takes care of mentally selecting a
destination, accessing the resources, formatting the
computing load appropriately for the destination, as
well as selecting methods for retrieving the data
whenever the unit of work is accomplished. For
this reason, the STAR experiment engaged and
developed a strategy by which all decision making
process would be done into a high level layer
named the STAR Unified Meta-Scheduler system
(or SUMS). SUMS is aimed to replicate the
human logic leading to such decision and
encompass all component performing these
functions. Its flexible design allows for multiple
scheduling algorithm and decision making
strategies as well as a universal grid or local
scheduler “plug and play” interface.

The architecture of SUMS can be represented in
three component architecture or layers. Each layer
represents a virtual interface where one
implementation and instance can be substituted
with another that performs the same task by means
of different algorithms. In other words, the
information exchange between the layers is well
organized into stable virtual objects. The most top
layer, known as the “initializer”, parses, validates,
and converts the users request to a generic form so
that it can be passed to the second layer, known as
the “policy”. The policy layer is really the heart of
SUMS as it resolves request for data sets (which
could be available only from one and one only
computing element) and map this request to the
available resources which could be either local or
grid resources, reserved or opportunistic. The
policy also has the ability to fold decision making
based on accounting information or historical
queue behaviour like in Ref [10].

The request or task is consequently split into a
subset of jobs which characteristics are optimal for
the chosen policy. The final component is the
dispatcher layer: its role is to receive and examine
the information about a job and format it
appropriately for each target scheduler and dispatch
it. To be specific on its role, while one need to
generate a script to be dispatched by a local
resource manager such as LSF [11], one would
need instead to generate a Condor job description
[8] instead whenever using the Condor job
dispatcher and so on. Usually, we use GRAM/DAG
for grid dispatching but could equally use a
submission Web-service by transforming the
SUMS virtualized job into the appropriate physical
representation.

POLICY’S INPUT: STRUCTURE OF
SUMS’ CONFIGURATION

Our initial implementation of the primary input for
decision making was very pragmatic and only
allowed submitting all jobs to one type of resource
per submission. Predefined combinations of the
policy and dispatcher blocks existed in the
configuration. The submitter could select from the
list only one of these structures to be used for
submission of their whole request. The inability to
submit to more than one location existed because
one could only select one dispatcher block to
which all jobs have to be sent for dispatching. Each
policy block above the dispatcher would contain a
list of homogeneous computing elements such as
different queues in the same batch system at the
same site. If the user wanted to split there request
between two sites they would have to split it
manually by submitting two requests.

Fig 1

FIRST PHASE OF EVOLUTION
The first phase of evolution involved inserting a
thin layer (Fig. 2) between the policy and the
dispatcher layers. This additional layer allows
heterogeneous computing resources to be inserted
into the policy. The layer in-between de-
multiplexes the stream the jobs coming through it
and redirects each one to the appropriate dispatcher
(Fig. 2) for the given target computing element of
the job. This allows the formation of policies with
heterogeneous site specific computing elements
allowing one user request to be split between
multiple site and batch systems. Policies could also
be configured that split the computing load up
between local resources and grids.
If users at siteA wish to submit to siteA a local
dispatcher would be used (LSF, SGE, PBS,
Condor). If users on siteA wanted to submit to
siteB a grid dispatcher would have to be used
(Condor-G, Web-services). However a user on
siteB would not want to use a grid dispatcher for
submitting to siteB thus there existed a need for
different configuration files. While this initial

6
66666666

Initializer

1

2

3Policy

Dispatcher

approach allowed to go far along the development
and use of SUMS in STAR, this solution would not
be scalable as the number of sites increases. If any
site made a change it could not easily be applied
because experts on each site had to adjusts there
custom configurations.

Fig. 2

SECOND PHASE OF EVOLUTION

In order to make one configuration file for all sites
without redundancy the configuration was reshaped.
A list of site containers (Fig. 3) is the root of the
configuration. The site container encapsulates a
representation of the resources of its site. Each site
container contains a list of zero through N batch
system objects that are accessible it the site. Each
batch system object holds a list of queue objects.
The queue object like all objects in the
configuration is virtual this means queues also
represent batch system pools in the case of the
condor batch system [8]. The queue objects hold
information on the parameters of the queue. Such
as allowed run time, memory, and swap space, the
assumption being that all nodes represented by a
queue are roughly identical. After a job has been
assigned to a queue the de-multiplexer determines
if this queue is locally accessible or if it resides on
a different site. If the physical queue is on the same
site the job is redirected to the local dispatcher. If
the job is on a different site the job is passed to the
grid dispatcher.
The user now selects only the policy and not the
final dispatcher to be used unlike the previous
configuration where the three layers where selected
at initialization. , The policy is a subset of (grid and
local) computing elements encapsulated by an
algorithm that governs the distribution of jobs to
the elements. If two users call the same policy at
different sites this would have failed in the
previous version of the configuration. In the
current version submitting is always possible
because the policy is no longer configured as grid
or local, dispatchers are available for both types of

local submissions. Modifications to the
configuration are replicated at all sites providing
more current versions of the configuration by
automated or manual configuration file
replacement.

Fig. 3

Each site object was also given parameters to allow
the resolution of site specific nuances. For example
some sites require the loading of modules or setting
of paths that the user has grown accustom to
having loaded by default at logon at the users home
site. These nuances are typically not available in
information services. However they are necessary
to insure that the user’s job can run on all sites.

FUTURE PLANES OF EVOLUTION
Our current configuration approach meets the
needs for all STAR sites. Future work enhancing
our approach includes access to dynamic
configuration by recovering the information from a
distributed service but even before that, a
deployment and support for more than one VO
access to resources. In fact, our next version will
take the concept of two access methods (grid and
local) and expand it into one or more access
methods for each VO within a single configuration
schema.

6

66 66 66

Initializer
1

2

4Policy

66666666 3

Dispatcher Dispatcher Dispatcher

Demultiplexer \ Redirector

1
2

3

4

5
Grid Dispatcher

Local Dispatcher

Batch System_n

Site_n

Site_1

Batch System_1

Queue_1

Queue_n

Fig. 4

In this evolutionary step we take into account that
one gatekeeper can allow access to zero or more
queues and this access can change based on the
users grid certificate or credentials. It is taken into
account that one gatekeeper may be accessed via
many access methods. For example one
gatekeeper may allow job to be submitted via web
services and globus RSL.
The structure of such a configuration is shown in
Fig. 4. The top root element is a list containing
sites. Each site container holds a list of gatekeepers,
available at the site. Each gatekeeper container
holds a list of access methods that may be used to

submit jobs through that gatekeeper. Each access
method contains a list of queues accessible via that
method. The access method container also contains
a list of certificates or roles, one of which must be
held by the submitter if they wish to submit to that
gatekeeper via that access method. Finally each
access method must hold one dispatcher object
which is used by the scheduler itself to take care of
the mechanics of: submitting the job, file staging
and recovering produced data.
There will still be a policy which holds a list of
queues but when the algorithm selects one of these
queues, it will traverse the portion of the tree
holding the queues objects of the configuration and
locate the occurrences of the queue within the tree.
Then it will drop all of the access methods for
witch the user does not have a certificate. If no
access methods remain the next queue will be
selected and the process will be repeated until an
access method to a gatekeeper on a site can be
found where the user can submit the job. The
access method can be quickly tested to verify that
the connection is up. Taking data about the state of
the connection from information services is also
useful for this task however the information is not
as up-to-dateas one would like. The access method
is also drop if the connection via that method is not
functional.

REFERENCES
[1]...The MonaLisa monitoring system
 http://monalisa.caltech.edu/
[2]...http://sphinx.phys.ufl.edu/
[3]...http://www.ivdgl.org/gridcat/
[4]...http://www.cnaf.infn.it/~andreozzi/datatag/ ...
...glue/
[5]...http://tyne.dl.ac.uk/StarterKit/gt2/mds/gluesch

ema.html
[6]...http://www.star.bnl.gov/STAR/comp/Grid/sch

eduler/
[7]...http://java.sun.com/products/jfc/tsc/articles/pe

rsistence4/
[8]...http://www.cs.wisc.edu/condor/
[9]...http://www.clusterresources.com/pages/produ

cts/maui-cluster-scheduler.php
[10].Development and use of MonALISA high

level monitoring services for the star unified
Meta-Scheduler, CHEP04 proceedings,
http://indico.cern.ch/contributionDisplay.py?c
ontribId=393&sessionId=7&confId=
0

[11]..http://www.platform.com
[12]..I.Foster “The Anatomy of the Grid: Enabling

Scalable Virtual Organizations”
Supercomputer Applications, 15(3), 2001

1
2

3

4

6

5

Dispatcher

Site_n

Site_1

Gatekeeper_1

Queue_1

Queue_n

Gatekeeper_n

Access Method_n

Access Method_1

Certificate_1

Certificate_n

