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Abstract:

In the distributed computing world of 
heterogeneity, sites may have from the bare 
minimum Globus package available to a plethora 
of advanced services. Moreover, sites may have 
restrictions and limitations which need to be 
understood by resource brokers and planner in 
order to take the best advantage of resource and 
computing cycles. Unfortunately, such information 
is usually not provided by information services or 
high level Grid services making the full 
exploitation of optimal resources far from reach. In 
this paper, we will discuss the evolution of the 
layout of the configuration of the STAR Unified 
Meta Scheduler (SUMS)[6] and will show how the 
approach allows to take full advantage of any 
available site as well as local resources in a 
transparent and “universal” manner. 

INTRODUCTION
In the distributed computing environment, one of 

the most challenging tasks is the represent the rich 
set of resources and capabilities of each and all 
sites into a consistent picture so a high level service 
could take into account these information for an 
optimal decision making outcome. For a resource 
broker or Meta-Scheduler (i.e. a wrapper around 
multiple local or distributed resource management 
systems), the challenge is to not only get this 
information in-situ, but also be able to provide 
ways to new sites to declare their resources and 
become part of the Virtual Organization reachable 
resources. Some of this information already resides 
in information services and information providers 
and schemas have been developed to represent the 
fine granularity of the computing element and 
storage element resources: The GLUE schema [5] 
for example has such detail information, the 
MonaLisa [1] retained historical information on 
resources and load or the GridCat [3] catalogue 
aims at providing a high level view of resource 
usage. None provide a consistent and simple set of 
information allowing however for a Meta-
Scheduler to understand the relationship between 
computing resources, storage, network and services
allowed to communicate in or out of the worker 

nodes, queue or pools and their mapping to those 
resources or even the multitude of choices when it 
comes to select one based on the user’s need or 
privilege to use those resources (sometimes only 
accessible by specific VOs). While the 
configuration of a site is of the choice and 
responsibility of a the site’s system administrator, 
local queue policies and site restrictions should be 
known as quickly and efficiently as possible to the 
scheduler. 

To this effect, the earliest as possible strategy 
could be employed: in such approach, the 
configuration of the software itself has to represent 
to a usable granularity, available computing 
resources, methods to access these resources as 
well as methods to transmit in and out data sets 
used for processing or as product of the jobs. This 
should ideally happen without any user manual 
intervention regardless of accessible sites. While 
the target implementation presented here is carried 
within the SUMS framework (a meta-scheduler or 
wrapper providing access to both grid and local 
scheduler), such idea has been independently 
carried within other projects such as the SPHINX 
scheduler [2] or the MAUI/MOAB scheduler to 
some extent [9]. Our intent is to describe and 
explain the scheme allowing a site to declare 
information which combines into a consistent set of 
parameters usable by a high level resource broker.
Such information is not specific to our Meta-
Scheduler and could be later expanded to a 
resource information schema for wider use.

THE SUMS META-SCHEDULER
The STAR experiment, as many High Energy 

and Nuclear Physics experiment, tend to have their 
workload which could be qualified as 
embarrassingly parallel: no particular effort is 
needed to segment the problem into a large number 
of parallel independent tasks allowing harnessing 
the power of grids by “dismantling” large 
computing requests into subsections that can be 
apportioned to smaller computing elements within 
the grid. However, apportioning of computational 
load is a non trivial task as frivolous distributions 
of load can yield longer turnaround in contrast to 
using local resources. Strategies to overcome such



scenarios traditional require copious amount of 
user intervention on the part of grid production 
coordinators. Because of the heterogeneity that 
exist among the resources being shared, the 
“human” element takes care of mentally selecting a 
destination, accessing the resources, formatting the 
computing load appropriately for the destination, as 
well as selecting methods for retrieving the data
whenever the unit of work is accomplished. For 
this reason, the STAR experiment engaged and 
developed a strategy by which all decision making 
process would be done into a high level layer 
named the STAR Unified Meta-Scheduler system 
(or SUMS). SUMS is aimed to replicate the 
human logic leading to such decision and 
encompass all component performing these 
functions.  Its flexible design allows for multiple 
scheduling algorithm and decision making 
strategies as well as a universal grid or local 
scheduler “plug and play” interface.

The architecture of SUMS can be represented in 
three component architecture or layers. Each layer
represents a virtual interface where one 
implementation and instance can be substituted 
with another that performs the same task by means 
of different algorithms. In other words, the 
information exchange between the layers is well 
organized into stable virtual objects.  The most top 
layer, known as the “initializer”, parses, validates, 
and converts the users request to a generic form so 
that it can be passed to the second layer, known as 
the “policy”. The policy layer is really the heart of 
SUMS as it resolves request for data sets (which 
could be available only from one and one only 
computing element) and map this request to the 
available resources which could be either local or 
grid resources, reserved or opportunistic. The 
policy also has the ability to fold decision making 
based on accounting information or historical 
queue behaviour like in Ref [10]. 

The request or task is consequently split into a 
subset of jobs which characteristics are optimal for 
the chosen policy.  The final component is the 
dispatcher layer: its role is to receive and examine
the information about a job and format it 
appropriately for each target scheduler and dispatch
it. To be specific on its role, while one need to 
generate a script to be dispatched by a local 
resource manager such as LSF [11], one would 
need instead to generate a Condor job description 
[8] instead whenever using the Condor job 
dispatcher and so on. Usually, we use GRAM/DAG 
for grid dispatching but could equally use a 
submission Web-service by transforming the 
SUMS virtualized job into the appropriate physical 
representation.

POLICY’S INPUT:  STRUCTURE OF 
SUMS’ CONFIGURATION 

Our initial implementation of the primary input for 
decision making was very pragmatic and only 
allowed submitting all jobs to one type of resource 
per submission. Predefined combinations of the 
policy and dispatcher blocks existed in the 
configuration. The submitter could select from the
list only one of these structures to be used for 
submission of their whole request. The inability to 
submit to more than one location existed because 
one could only select one dispatcher block to 
which all jobs have to be sent for dispatching. Each 
policy block above the dispatcher would contain a
list of homogeneous computing elements such as 
different queues in the same batch system at the 
same site. If the user wanted to split there request 
between two sites they would have to split it 
manually by submitting two requests.

Fig 1

FIRST PHASE OF EVOLUTION
The first phase of evolution involved inserting a 
thin layer (Fig. 2) between the policy and the 
dispatcher layers. This additional layer allows 
heterogeneous computing resources to be inserted 
into the policy. The layer in-between de-
multiplexes the stream the jobs coming through it 
and redirects each one to the appropriate dispatcher
(Fig. 2)  for the given target computing element of 
the job. This allows the formation of policies with
heterogeneous site specific computing elements 
allowing one user request to be split between 
multiple site and batch systems. Policies could also 
be configured that split the computing load up 
between local resources and grids. 
If users at siteA wish to submit to siteA a local 
dispatcher would be used (LSF, SGE, PBS,
Condor). If users on siteA wanted to submit to 
siteB a grid dispatcher would have to be used 
(Condor-G, Web-services). However a user on 
siteB would not want to use a grid dispatcher for 
submitting to siteB thus there existed a need for 
different configuration files. While this initial 
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approach allowed to go far along the development 
and use of SUMS in STAR, this solution would not 
be scalable as the number of sites increases. If any 
site made a change it could not easily be applied 
because experts on each site had to adjusts there 
custom configurations. 

Fig. 2

SECOND PHASE OF EVOLUTION

In order to make one configuration file for all sites 
without redundancy the configuration was reshaped. 
A list of site containers (Fig. 3) is the root of the 
configuration. The site container encapsulates a 
representation of the resources of its site. Each site 
container contains a list of zero through N batch 
system objects that are accessible it the site. Each 
batch system object holds a list of queue objects. 
The queue object like all objects in the 
configuration is virtual this means queues also 
represent batch system pools in the case of the 
condor batch system [8]. The queue objects hold 
information on the parameters of the queue. Such 
as allowed run time, memory, and swap space, the 
assumption being that all nodes represented by a 
queue are roughly identical. After a job has been 
assigned to a queue the de-multiplexer determines 
if this queue is locally accessible or if it resides on 
a different site. If the physical queue is on the same 
site the job is redirected to the local dispatcher. If 
the job is on a different site the job is passed to the 
grid dispatcher.
The user now selects only the policy and not the 
final dispatcher to be used unlike the previous 
configuration where the three layers where selected 
at initialization. , The policy is a subset of (grid and 
local) computing elements encapsulated by an 
algorithm that governs the distribution of jobs to 
the elements. If two users call the same policy at 
different sites this would have failed in the 
previous version of the configuration. In the 
current version submitting is always possible 
because the policy is no longer configured as grid 
or local, dispatchers are available for both types of 

local submissions. Modifications to the 
configuration are replicated at all sites providing 
more current versions of the configuration by 
automated or manual configuration file 
replacement.

Fig. 3

Each site object was also given parameters to allow 
the resolution of site specific nuances. For example 
some sites require the loading of modules or setting 
of paths that the user has grown accustom to 
having loaded by default at logon at the users home 
site. These nuances are typically not available in 
information services. However they are necessary 
to insure that the user’s job can run on all sites.        

FUTURE PLANES OF EVOLUTION
Our current configuration approach meets the 
needs for all STAR sites. Future work enhancing 
our approach includes access to dynamic 
configuration by recovering the information from a 
distributed service but even before that, a 
deployment and support for more than one VO
access to resources. In fact, our next version will 
take the concept of two access methods (grid and 
local) and expand it into one or more access 
methods for each VO within a single configuration 
schema.
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Fig. 4

In this evolutionary step we take into account that 
one gatekeeper can allow access to zero or more 
queues and this access can change based on the 
users grid certificate or credentials. It is taken into 
account that one gatekeeper may be accessed via 
many access methods.  For example one 
gatekeeper may allow job to be submitted via web 
services and globus RSL.
The structure of such a configuration is shown in 
Fig. 4. The top root element is a list containing 
sites. Each site container holds a list of gatekeepers, 
available at the site.  Each gatekeeper container 
holds a list of access methods that may be used to 

submit jobs through that gatekeeper. Each access 
method contains a list of queues accessible via that 
method. The access method container also contains 
a list of certificates or roles, one of which must be 
held by the submitter if they wish to submit to that 
gatekeeper via that access method. Finally each 
access method must hold one dispatcher object 
which is used by the scheduler itself to take care of 
the mechanics of: submitting the job, file staging 
and recovering produced data.
There will still be a policy which holds a list of 
queues but when the algorithm selects one of these 
queues, it will traverse the portion of the tree 
holding the queues objects of the configuration and 
locate the occurrences of the queue within the tree. 
Then it will drop all of the access methods for 
witch the user does not have a certificate. If no 
access methods remain the next queue will be 
selected and the process will be repeated until an 
access method to a gatekeeper on a site can be 
found where the user can submit the job. The 
access method can be quickly tested to verify that 
the connection is up. Taking data about the state of 
the connection from information services is also 
useful for this task however the information is not 
as up-to-dateas one would like. The access method 
is also drop if the connection via that method is not 
functional. 
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