
RELATIONAL DATABASE IMPLEMENTATION AND USAGE IN STAR

M. DePhillips, J. Lauret, V. Perevoztchikov, BNL Upton, USA

J. Porter, University of Washington, Seattle WA, USA

Abstract
The STAR experiment at Brookhaven National

Laboratory’s Relativistic Heavy-Ion Collider has been

accumulating 100’s of millions events over its already 5

years running program. Within a growing Physics

demand for statistics, STAR has more than doubled the

events taken each year and is planning to increase its

capability by an order of magnitude to reach billion event

capabilities by 2008. Under such a rate stress imposed by

the event rate, the run condition support and database

back-end needed to rapidly mature to follow the demand

while preserving user convenience and time evolution but

also allow for in depth technology as required.

This document presents the use of relational databases

in STAR organized as a three tier architecture model: a

front-end user interface, a middle tier home grown C++

library (StarAPI) that handles all of the unique

requirements arising from an active experiment, and

finally, the lower level DBMS requirements and data

storage. Paramount considerations include maintaining

flexibility and scalability with modular construction and

consistent namespace; ensuring long-term analysis

integrity with three-dimensional time stamping or range

of validity which in turn allows for solid schema

evolution; and ensuring uniqueness with expanded

primary keys. This paper identifies and discusses trade-

offs and challenges that have occurred during the

evolution of the STAR experiment, and specifically the

challenge introduced by detectors which could only be

described in terms of million leaves within an ultra-fine

granularity of calibration values.

INTRODUCTION

There is often a gulf between principle and practice

when designing database systems, especially those that

are to be used in a dynamic experimental setting. These

differences arise as new, unexpected requirements are

discovered and implemented. Also, data volume tends to

increase in unforeseen ways as technologies improve over

time. Careful attention to the design phase of these data

base systems can provide a scalable and flexible system

that can adapt and absorb the changes while providing a

consistent interface to the end user of the system.

The STAR database system has proven to date, that its

initial design is robust enough to grow within the

demands of an active experiment on the Relativistic

Heavy Ion Collider.

Background

The following decisions resulted from the design phase

of STAR database system

• That the online and offline database system are

inherently different in their purpose and their

operations therefore should remain separate

from each other.

• MySQL would be used as the main DBMS for

both systems

• For the Offline system, an in-house API

library should be build using well defined

requirements

.

This system was deployed in-full in 2000.

Modifications have been made to adapt to the evolving

demands, however, the user interface layer has remained

constant through the years.

CURRENT SYSTEM

Online

STAR’s online database system is primarily a data-

taking system. These data include condition and

monitoring data from the detectors and the collider and,

event, file and run tag information from the data

acquisition system. The exception to this writing is an

aggregate series of tables that compile vital run

information and display this information in real time on

the web.

The detector and collider data are streamed in to the

database tables using a suite of C++ based daemons that

poll STARs slow controls system (i.e., EPICs). Each

daemon is specific to one data-source (e.g., a specific

detector) and writes to a specific database. Due to the

specificity of the daemons and since they are compiled

C++ code they are fast, have a small footprint and are

independent of each other, thus creating no dependencies.

The Run, File and Event tags are written directly into

the databases, using the MySQL C API, from the data

acquisition. By far, the largest database in the STAR

system is the Event Tag which contains information about

each event taken in the various detectors. Table 1 shows

the growth of events taken over years of RICH running.

It is with this table that the system faces it’s only stress,

primarily due to its size. MySQL handles these issues

nicely by providing a fast storage engine and the ability to

compress and remerge tables which allows for the

“rolling over” of tables, keeping them at a manageable

size.

The choice to use MySQL for this system was initially

based on its flexibility and its writing speed. MySQL

allows for many databases, containing many tables, to

exist on one instance of its server. This allows for a clean

division in data storage. Its MyISAM storage engine is a

suite of three files that require no expanded table space

typical to databases that support transactions. With no

transactions needed, just in direct simple writes, this

engine is ideal for fast data collection. STAR has been

steadily writing at an average of 200 HZ into these tables

without a problem. It should be noted that there is a one

field integer index on the largest of these table, which are

allowed to grow to roughly 20 million records before they

are rolled over.

Table 1: Online Data Stored in EventTag DB

Year Events

(Millions)

Storage Size

2001 3 21 MB

2002 51 50 MB

2003 148 98 MB

2004 300 68 GB

2005 568 110 GB

Online Topography

The online system contains one linux node with three

instance of MySQL running. These configurations allows

for access to the three discrete sets of databases through

three separate ports. This helps with bandwidth. The data

acquisition tables are separated from the conditions

databases. Both these port aggregate data to a third port

which contain the Run Log tables. These tables support

the real time monitoring of the runs and require reads

from PHP code access via the WWW.

There are two backup nodes, one that simultaneously

collects conditions data and receives periodic back-ups of

data acquisition data. A second node receives nightly

dumps of all conditions and run log tables.

Online to Offline

Much of the online conditions data is used in offline

analysis as calibrations values. Latency is not an issue

here since offline analysis is not normally done in real

time. For completeness, it is worth mentioning that there

is a “fast offline” system in place that analyzes a sample

of recently received data, however, its tax on the database

system is negligible, therefore, not discussed in detailed

here.

The migration of these values is done with a series of

ROOT marcos triggered by cron at various intervals

ranging from every five minutes to once an hour. These

macros are similar to the online daemons in that they map

a specific data source to a specific table. They differ in

that they do not strictly stream data. The macros take

averages, intervals and make decisions as to what values

are appropriate for offline analysis.

Offline

The star offline system serves primarily the

reconstruction and analysis of data. The data base system

consists of suite of discretely organized databases each

containing a set of storage tables and a home-grown API

interface from user to tables. The following design

considerations where taken into account when composing

the API which in term led to the design of the tables and

the databases that contain them.

• SQL should be hidden from user code

• Monitor Loads and Economize usage

• Independence for all other frameworks

• Data is access using generalized code.

The API accomplishes these goals by providing uses

with at set of generalized methods for retrieve and writing

data, building hierarchies and trees for data retrieval.

Also the API uses four API specific tables that sit

alongside the actual data storage table to pre-define

indexes, maintain knowledge of it own schema and

provide transparent grouping mechanisms. The grouping

and indexing is accomplished, in conjunction with these

tables, with a five element primary key.

Offline-API

The API relates to the database storage tables via a set

of naming conventions that is used in place of a catalogue

of available data sources. These naming conventions are

of the following format: Domain_type. Domain

represents the usage of data that the database contains, for

example calibration, condition, or geometry

data. Type, represents the subsystem or detector the

data belongs to, for example, tpc, ssd, or emc.

Therefore, an example of a database name would be

Calibrations_tpc or Geometry_ssd. This

convention is very useful in creating trees for retrieval of

data during production or analysis. For example, the

domain is a parent leaf to children types which are in turn

parents to their tables etc… This type of tree is copied

into memory once and standard tree parsing algorithms

are use to traverse the trees in search of data.

The indexing, a grouping of retrieved data, is based on

a five element primary key. The key consists of

• beginTime – A time stamp that denotes

the beginning of a validity period –

usually associated with the beginning of a

star data taking period, confusingly also

called a run, “STAR Run”. (the running

period of the yearly active collider will be

referred to as a “RHIC Run”.)

• endTime - which denotes the end the

time of a table/detector. It is important to

note this is different than the end of a

valid period such as a STAR run.

• Flavor – a grouping flag which denotes

a particular type of data e.g., “simu” for

simulation data, or “ofl” for offline data.

• ElementID – a finer grained grouping

mechanism that allows for multiple rows

to be returned with one time stamp.

• entryTime – real time entry of data

values

The STAR API timestamp is three dimensional,

containing the beginTime and entryTime from the

primary key and another time field called deactive.

This field, when set as a time value, turns a record off

from that time forward. This timestamp scheme creates

validity time ranges: one beginTime to the next

beginTime allows for corrections to be made by

deactivating a record and allows for schema preservation

by the use of the entryTime. When code and database

values are frozen for a production, a production time is

announced. The production time creates a snapshot in

time which secures the ability for a user to go back in

time and recreate a production. This is true even if a

value has been deactivated and changed at a later date.

The API also uses a table that contains a self

description of the schema of the database. The purpose of

this is to provide independence from any external

framework that interacts with the API. Much like a web

service, the API connects to the outside world by

accepting generalized fetch of write requests and passes

back a shapeless object (void *) with a self-descriptor.

It is these self descriptions that are stored in the

aforementioned table.

In terms of the actual library the STAR DB API is itself

modelled after three tier architecture. The High level user

interface remains static; no changes have been made to

those classes/methods since the inception of the API. This

consistency increases user expertise and acceptability of

the system. The other tiers contain STAR specific

wrappers around low level SQL and operations and

management methods.

Offline Topography

STAR Offline database system uses MySQL replication

to set up an immediate distribution of database value for

the purpose of load sharing both locally at BNL and

globally. At BNL there is one master and two pools of

slaves. Three nodes are dedicated to analysis and have

conduits through the BNL firewall to the outside world.

Four nodes are for internal reconstruction. These

machines support a farm of 545 nodes. There are an

additional 5 nodes which connect to the BNL master as

slaves that are distributed to STAR global community of

collaborators. Each node functions well up to about 300

concurrent connections, at which the machine

responsiveness depletes. The load sharing as is, keeps the

maximum connection to each node at about 150 threads.

ONGOING DEVELOPMENT

The very nature of an active experiment is dynamic and

as mentioned in the previous section one of the goals of

the STAR database system is to maintain a consistent

generalized interface for users. This means all alterations

and adaptations must take place either on a table-

schematic level or in the lower level modules of the API.

To date, all new requirements of the databases system has

been able to be absorbed by these levels. Below is a case

study that represents a typical transition that the database

system must support.

 Silicon Strip Detector Calibrations

With the commissioning of the 6th RHIC run STAR

began to integrate its Silicon Strip Detector (SSD). The

SSD provided some unique challenges to the database

system in that it contains 491520 points of calibrations.

Further, any number of these calibrations could be

tweaked on a STAR Run by Run basis. The traditional

method for recording Calibration tweaks would be to

provide a new block of data, grouped on the elementID

delimited by the beginTime. In this case each block

would contain ½ million records. This, of course,

presents both storage and performance issues.

Specifically the following three issues needed to be

addressed.

• Size of returned data set

• Performance hit based on large queries

• Size of the storage table

The respective solutions are as follows:

• Data Packing

• Query Optimization

• Schematic Architecture of tables

The size of each row of data was reduced by a factor of

two by packing integers into chars when it assured that

the value will not be greater than 255. In the case of the

SSD, two out of three fields could be stored as chars, or

“tiny ints” in MySQL terminology. Bit masking is also a

useful technique to pack data into smaller containers.

The low level SQL contained the where clause

operator “in”. This is a good generalization technique

that tightens code, in that it accepts both many and one

parameter, therefore no decision has to be made.

However with the arrival of the SSD the ‘in’ clause

contains 491520 parameters. By adding some decision

making logic and introducing the “between” operator,

the API improved performance by greater than a factor of

two for queries that included the SSD and thus, is able to

handle large amount of data paradigm.

In the original database system the size of the storage

table increase by the indexed block of data each time a

value is change. In the case of the SSD, that would mean

an additional 491520 rows with each tweak. This is

beyond reason and the API and schema needs to be

changed to accept only the changed values and bring the

unchanged values up in time while also leaving them

available to their original timestamp. This work is

ongoing.

Online API

As STAR continues there is a greater emphasis to

quickly analyze data in from the online systems. This

means unforeseen requests to the data tables. Unlike,

offline, however, requests come with greater urgency and

variety of ad-hoc methods are used to access data from

the database. New ideas stabilize without any attempt at

standardization. Different users prefer different tools

creating a mix of technology. Administration of the

servers load becomes difficult. These issues point directly

at the need for an Online-API that mimics the

functionality of the STAR offline API.

The original STAR database design still holds for the

development of the online API. For example the three tier

architecture would remain, the same naming conventions

could be used, and most classes would not need to be

changed. The main differences would be in grouping

methods. Based on present usage, online grouping comes

more in terms of by run or by trigger as opposed to by

timestamp in offline. This is an ongoing project.

CONCLUSIONS

The STAR database system has proven to be a scalable

and flexible, by providing users with a stable consistent

interface to database values while handling the rigors of a

production environment of an active experiment.

The system continues to evolve with this established

framework to handle new challenges that develop as the

experiment matures.

REFERENCES

[1] MySQL http://www.mysql.com/

[2] STAR Database documentation

http://www.star.bnl.gov/STAR/comp/db/

[3] Porter R. J. “STAR Database Implementations with

MySQL”. Proc. Of CHEP 2001 CERN 2001-2-030,

2001.

