
CLUSTER ARCHITECTURE FOR JAVA WEB HOSTING AT CERN

Michal Kwiatek, CERN, Geneva, Switzerland

Abstract
Over the last years, we have experienced a growing

demand for hosting Java web applications. At the same
time, it has been difficult to find an off-the-shelf solution
that would enable load balancing, easy administration and
a high level of isolation between applications hosted
within a J2EE server.

The architecture developed and used in production at
CERN is based on a Linux cluster. A piece of software
developed at CERN, JPSManager, enables easy
management of the service by following the self-
management paradigm. JPSManager also enables quick
recovery in case of hardware failure. The isolation
between different clients of the service is implemented
using multiple instances of Apache Tomcat, but the
architecture is open and a different J2EE server can be
incorporated if necessary. This paper describes this
architecture in detail and analyses its advantages and
limitations. Examples of HEP related applications, which
make use of this architecture, are also given.

INTRODUCTION
The number of Java web applications used at CERN

has increased considerably over the last few years. The
fact that users were running web applications on their PCs
was considered as a potential security threat to the
laboratory, as it was impossible to enforce a satisfactory
level of patches to the application server software run by
individuals.

Furthermore, maintaining a production service requires
skills and resources different from those needed to create
an application. Although individual teams of analysts and
developers have the intimate knowledge of specific
requirements that enable them to build successful
applications for their users, smooth operation of the
service is ensured through mundane tasks such as:
provisioning of reliable hardware, providing redundant
hardware, performing upgrades and application patches to
the application server software, providing backups and
monitoring. These tasks tend to be similar regardless of
the application and performing them centrally can
produce considerable synergies.

It has been therefore decided that a central service for
Java web hosting, hereafter called J2EE Public
Service[1], should be created at CERN. This paper
describes the architecture and management software that
has been built and is currently used within J2EE Public
Service, analyses its advantages and limitations and gives
examples of HEP related applications hosted within the
service.

REQUIREMENTS
It has to be noted that from the very beginning large,

mission critical applications were out of the scope of the
service. Such applications often have very particular
needs and the effort necessary to satisfy all potential
needs in a general way would be too expensive. Also,
mission critical applications very often require and can
afford a dedicated service run on specific hardware.

Shared container Private container

Java web application

Java web application

Java web application

Java web application

Java web application

Java web application

Java web application

Java web application

Java web application

Java web application

Physical host

J2EE web container

J2EE web container

J2EE web container

J2EE web container

Physical host

Figure 1: Important design choice: shared and private container scenarios.

 Consequently, the project focused on medium-sized
applications. However, the requirements were gathered
throughout discussions with owners of both types of
applications. The two groups actually agreed that most
interest lay in the J2EE web container, as opposed to the
full J2EE stack. Apache Tomcat has been proposed as a
good alternative to Oracle OC4J.

A question asked many times during these discussions
was the following: how do we ensure a proper isolation of
applications hosted within the service? This proved to
have important implications for security, stability and
manageability of the service. How do we make sure that
one application does not overwrite another application’s
files?

Two scenarios have been considered (see Fig. 1). The
standard approach, in which many applications share the
same web container, clearly does not provide sufficient
isolation. Applications hosted in the same container
would be run with privileges of the same operating
system user, which would make file system access
restrictions ineffective.

A private container scenario, in which each application
owner is given a separate container, overcomes these
limitations. Containers can be run as separate operating
system users and custom configuration changes can be
put in place, if needed by the applications. However, this
scenario has a performance overhead due to running
many Java virtual machines, so its feasibility had to be
proven.

Performance tests have been carried out to compare the
two approaches and to determine which application server
software to use. Based on the experience we had, we

considered Apache Tomcat[2], Oracle OC4J and Oracle
iAS.

Test results[3] proved that private containers indeed
had a performance overhead over a shared container, but
that overall performance of private containers satisfied the
design goals. Memory has been identified as the key issue
limiting the number of applications that can be hosted on
a single host and Apache Tomcat performed best in this
scenario thanks to having the smallest memory footprint.

THE ARCHITECTURE
The architecture designed and built at CERN is based

on a Linux cluster: it uses a set of machines configured in
a similar way to provide scalability (see Fig. 2). User
applications are hosted in private J2EE web containers
(separate containers are configured for each application
owner) and are run in separate operating system
processes. Consequently, they accept network
connections on different port numbers.

An additional component, hereafter called the proxy, is
used to make the actual location of the application
transparent to the end user of the application (web
reader). Web readers always connect to the applications
using the proxy and always use standard ports 80 and 443.

In case of hardware failure of one cluster node, service
components hosted on this node (including the proxy) can
be quickly restarted on a different node.

JPSManager software has been developed at CERN to
manage this architecture.
Security

This architecture enables standard file system level

Figure 2: Cluster architecture used currently at CERN.

J2EE web

java web application

Physical

J2EE web

java web application

J2EE web

java web application

java web application

J2EE web

java web application

Physical

J2EE web

java web application

J2EE web

java web application

java web application

Java web application

Java web application

Java web application

Java web application

HTTP, HTTPS

AJP

SSH

SSH, HTTPS

Application owner Application user

JPSManager

Proxy

Physical host Physical host Physical host

J2EE Web Container

J2EE Web Container

J2EE Web Container

access control, which is the basic layer of security. On top
of that, Java security manager is configured. It gives the
service manager fine grained control over the actions that
are allowed or disallowed (for example: opening a
network connection to a remote database service is
allowed but listening on a local socket is not allowed).

JPSMANAGER
JPSManager software has been developed at CERN to

enable automatic management of the architecture
described above. It is, in fact, an important element of this
architecture as it configures a separate web container for a
new user and later enables the user to deploy his/her
application to the cluster.

Another goal of JPSManager is to provide a layer of
abstraction over the functionality of the J2EE web
container used within the service. This is meant to enable
easy evolution of the service in the future: the underlying
J2EE container, the proxy and even the policy to assign
containers to users can be changed with only minor
changes to the JPSManager software.

This flexibility has been achieved by building the
software around three main interfaces (see Fig. 3):
• JPSContainerManager, which formally describes

methods needed to be implemented when a new
type of container is to be used within the
architecture,

• JPSProxyManager, which describes methods for a
specific type of proxy,

• JPSContainerAssigner, which formalises policies
to assign container to application owners (web
authors).

JPSManager also provides a rich administrative interface
for service managers (both www and command-line) and
SOAP web-services to enable integration with external
systems. The software has been fully instrumented to
provide logs and detailed performance records of the
entire cluster.

J2EE PUBLIC SERVICE
The J2EE Public Service uses the architecture

described above to provide a production Java web hosting
service at CERN. The service uses JPSManager software,
Apache Tomcat J2EE web container (application server)
and Apache Web Server[6] as the service proxy.

The service is integrated with other standard services
provided by IT Department at CERN:
• Central Web Services[5], which provide a central

registry for all types of web applications,
• The Central Database Service
• NICE authentication: the standard authentication

method at CERN, recommended to web authors to
make authentication of their users (web readers)
easier and more secure.

The Service Level Agreement is aimed for medium-
sized, non-critical applications with full support within
CERN working hours.

Figure 3: JPSManager - flexibility achieved by building the software around three main Interfaces.

Examples of applications*

The following applications are, among others, currently
deployed within J2EE Public Service:
• Automatic Holding Point is a central point of contact

between AT Department engineers, analysts and
external companies to enable follow-up of LHC main
dipole and quadrupole production. Dipole data is first
uploaded to the system by external companies and
then reviewed by CERN analysts. About 5 decisions
a day are made based on that data; these decisions are
communicated to the companies and engineers at
CERN, who later access the data.

• Dipole Geometry Viewer provides online graphs and
is used by the CERN AT Department engineers for
magnet measurements similarity checks.

• Application enabling optimization of Short Straight
Sections alignment for LHC machine, by
implementing possible transformation: shift or roll.
This application displays mechanical and magnetic
horizontal and vertical profile as well as the racetrack
of SSS. Geometrical positions of service lines
(helium, electricity, etc.) and the beam lines are also
displayed to help users determine convenient
transformation to SSS.

• Information retrieval system for searching documents
stored in EDMS, CDS and on JACOW website. It
combines traditional techniques based on the vector
space model with ontologies and more advanced
natural language processing to improve precision of
the search system.

• ATLASMonitor – a Web Information System
managing documents related to construction of the
ATLAS detector. It profits from the flexibility of web
technologies, such as XML and XSL, to represent
respectively the data and its format. Through a user-
friendly interface one can easily describe how to
insert, edit, show and search for specific pieces of
information that comprise a document. Storage of
new types of documents does not require code
adaptation. ATLASMonitor is currently maintained
by the ATLAS Technical Coordination and uses
J2EE to handle the Quality Control Sheets of the
ATLAS Tile Calorimeter commissioning phase.

Limitations
J2EE Public Service does not currently offer load-

balancing or high availability solutions other than
horizontal scalability and hardware redundancy that are
inherently built into the architecture and ensure fast
recovery in case of hardware failure. Enterprise Java
Beans (EJBs) are currently not supported.
Evolution

Certificate authentication is going to be implemented in
line with functionality offered by Central Web Services at
CERN.

* This section is based on the original descriptions kindly provided by
application owners: Natalia Emelianenko, Jerome Beauquis, Antonio
Jimeno Yepes and Felipe Fink Grael.

Flexibility of JPSManager software enables easy
evolution of the service. The following solutions are
going to be evaluated and implemented depending on user
needs and available resources:
• Use of other J2EE containers: JBoss, Oracle OC4J.
• Clustering of individual J2EE containers.
• Use of hardware load balancer as service proxy.

SUMMARY
The J2EE Public Service provides a robust server

infrastructure and deployment support to owners of Java
web applications at CERN. Synergies have been created
and risks of security threats have been reduced since
backups, monitoring, patching and server software
upgrades are performed centrally.

The architecture of the service is based on a Linux
cluster; a proxy is used to enable transparent access to
applications regardless of their actual location in the
cluster. Hardware redundancy is inherently built into the
architecture. Each application owner is assigned his/her
private container, which provides a high level of isolation
between applications and increases manageability. A
piece of software developed at CERN, JPSManager,
enables easy management of the service by following the
self-management paradigm.

 The J2EE Public Service does not currently offer EJBs
support or high availability mechanisms. However,
solutions such as clustering of individual J2EE containers
and use of DNS and hardware load balancing are going to
be evaluated.

AKNOWLEDGMENTS
I would like to thank Artur Wiecek and Eric Grancher

for their very important advice and support throughout the
work on J2EE Public Service.

Derek Mathieson and James Purvis provided very
important input when requirements were collected;
Natalia Emelianenko, Gregory Bevillard and Jerome
Beauquis were the first users to migrate their applications
to the prototype. Their feedback was very important and I
would like to thank them for that effort.

I would also like to thank Alexandre Lossent and
Alberto Pace for their help in integrating J2EE Public
Service with CERN’s central Web Services.

REFERENCES
[1] J2EE Public Service: http://www.cern.ch/j2ee-public-

service.
[2] Apache Tomcat: http://tomcat.apache.org.
[3] Michal Kwiatek, J2EE Public Service, prototype

phase, CERN Desktop Forum, February 2005:
http://indico.cern.ch/conferenceDisplay.py?confId=a
05985

[4] Apache Web Server: http://httpd.apache.org/
[5] CERN Web Services: http://www.cern.ch/web

http://www.cern.ch/j2ee-public-service
http://www.cern.ch/j2ee-public-service
http://tomcat.apache.org/
https://mmm.cern.ch/exchweb/bin/redir.asp?URL=http://indico.cern.ch/conferenceDisplay.py?confId=a05985
https://mmm.cern.ch/exchweb/bin/redir.asp?URL=http://indico.cern.ch/conferenceDisplay.py?confId=a05985
http://httpd.apache.org/
http://www.cern.ch/web

	CLUSTER ARCHITECTURE FOR JAVA WEB HOSTING AT CERN
	INTRODUCTION
	REQUIREMENTS
	THE ARCHITECTURE
	JPSMANAGER
	J2EE PUBLIC SERVICE
	SUMMARY
	AKNOWLEDGMENTS
	REFERENCES

