
A Grid of Grids using Condor-G

R. Walker, M. Vetterli, Simon Fraser University, Burnaby, Canada
A. Agarwal, R. Sobie, D. Vanderster, University of Victoria, Canada

M. Grønager, University of Copenhagen, Denmark

Abstract

The Condor-G meta-scheduling system has been used
to create a single Grid of GT2 resources from LCG and
GridX1, and ARC resources from NorduGrid. Condor-G
provides the submission interfaces to GT2 and ARC gate-
keepers, enabling transparent submission via the scheduler.
Resource status from the native information systems is con-
verted to the Condor ClassAd format and used for match-
making to job Requirements and Rank by the Condor Ne-
gotiator. The use of custom external functions by the Nego-
tiator during matchmaking, provides versatility to develop
job placement strategies. For example, a function exist to
use a matrix of CE-to-SE bandwidths, together with data
location information, to make ’network closeness’ avail-
able to both Requirements and Rank expressions. Other ex-
amples where such flexibility can be applied are in imple-
menting a feedback loop to dynamically prefer successful
or fast resources, and block matching to blackholes. The
Condor-G Grid of LCG resources has produced 180,000
jobs during recent ATLAS productions, which matches the
number produced by the LCG Workload Management Sys-
tem in the same period. GridX1 resources were used for
ATLAS production in this way starting Autumn 2005. Sim-
ple jobs have been matched and ran on the full Grid federa-
tion, including NorduGrid resources, and work is underway
to make use of advanced ARC features allowing Condor-G
submission of ATLAS production on all resource flavours.

INTRODUCTION

We describe the use of Condor-G as a complete Work-
load Management System(WMS) for grid resources. This
includes the matchmaking of jobs to resources based on re-
quirements and preferences for static or dynamic resource
attributes, and also allows the use of external data such as a
data location catalogue. A scalable architecture of mul-
tiple Schedulers is discussed in comparison to the LCG
WMS which scales with multiple Resource Brokers(RB).
The system has been deployed on the Canadian HEP Grid,
GridX1, and parasitically on LCG to include over 100 sites.

CONDOR AND CONDOR-G

Condor-G is an extension of the popular batch system
to the grid world. In the Condor batch system(BS) each
worker node(WN) publishes its capabilities and status to a
Collector in the form of a ClassAd, a list of attribute-value
pairs. A user job is also represented by a ClassAd, and is
also sent to the Collector. It contains theRequirementsand

Rankexpressions which specify requirements and prefer-
ences of the job in terms of the WN capabilities, e.g. OS or
minimum RAM. A Negotiatorperiodically processes the
job and resource ClassAds to match jobs to the most ap-
propriate WN.

Zooming out from the batch system to consider dis-
tributed processing clusters. The batch nodes are replaced
by remote gatekeepers to these clusters, and the WN Clas-
sAd is replaced by a description of theclustercapabilities
and status, e.g. the number of running and waiting jobs, or
the total number of cpus. The architecture and the Condor
software components are unchanged, but now the job dis-
patch is from a local Scheduler to a remote gatekeeper. For
this purpose, Condor-G provides a client implementation
of the GRAM protocol.

The architecture including the three Condor services is
shown in Fig.1. Scalability is achieved by having multiple
Schedulers, in contrast to LCG WMS where there are mul-
tiple Resource Brokers(RB). It should be noted that if RBs
do not communicate, and they don’t, then having multiple
instances prevents any intelligent resource brokerage what-
soever. The most attractive resource is attractive to all N
RB’s and is thus N times over-subscribed. Scaling at the
Scheduler level, duplicates the busiest component of the
WMS without compromising the resource brokerage. Of
course this does not scale indefinitely as a single Negotia-
tor has its limits but 2-3 Negotiators is preferable to 20-30
RB’s (by some estimates based on current performance).

Figure 1: The service architecture of Condor-G with
matchmaking, showing the scalability via multiple Sched-
ulers



Matchmaking

The matching of jobs to gatekeeper resources is per-
formed by theNegotiator in the same way that jobs are
matched to WNs in the Condor BS. First, the resource and
job ClassAds are used to evaluate requirements expressions
for both the resource and the job. The job typically con-
tains constraints on the resource capabilities such as OS or
RAM. Also the resource ClassAd can contain constraints,
e.g.no job starts between 08:00-17:00. The job Rank ex-
pression is evaluated only for job-resource pairs which pass
the requirements. The expressions are mostly formed by
simple logic of the attributes in the job and resource Clas-
sAds. However there is the possibility to include arbitrary
functions which will be evaluated by the Negotiator in cus-
tom shared object libraries. These enable external infor-
mation, not expressible in the ClassAds, to be folded into
the matchmaking process. The classic example is in using
the location of any required input data in deciding where to
send the job - so called data co-location. Such a function
can be incorporated into both the Rank and Requirements
expressions, to add constraints and preferences, and is most
powerful when used in conjunction with a table of inter-site
bandwidths. This is used for ATLAS production whereby a
minimum bandwidth to the input data is required and sites
with higher bandwidth to the input data are strongly pre-
ferred. The LCG WMS only allows an absolute require-
ment that the input data is onthe close SE, which is very
inflexible, and thus largely unused.

Input and Output sandboxes

The input sandbox typically consists of steering scripts
and configuration files, and as such should be only a few
MB. Larger files such as binaries or input data have dif-
ferent routes to the Worker Node. Condor-G and GRAM
arrange for the user executable to get to the WN, and for
the standard output and error to get back to the submission
host. We take advantage of this by embedding the input
and output sandboxes inside the executable and stdout re-
spectively.

The user executable (usually a script) and any other input
files are wrapped into a self-extracting tarball and this is
sent as the executable. On arriving at the WN and being
run, the tarball unwinds and the actual user executable is
run.

Similarly, the actual stdout from the job and any (small)
output files are wrapped into a tarball which is passed back
as the stdout. A simple script unpacks this when the user
wishes to see the actual output files. The stderr is un-
touched and serves to report any problems in the input or
output sandboxing. Although Condor-G does offer mech-
anisms for moving arbitrary files to and from WNs, this
was found to be the only method which worked consis-
tently regardless of which jobmanager was met on the gate-
keeper. In particular, the custom LCG jobmanagers that
enable non-shared home areas on the WNs, were found to
disrupt such Condor-G mechanisms.

DEPLOYMENT AND OPERATION

GridX1

GridX1 is the Canadian HEP grid consisting of 4 clus-
ters and over 2000 cpus. The clusters are shared with other
disciplines and have no manpower to install LCG middle-
ware. However they all have gatekeepers and could be in-
tegrated into a Condor-G grid by periodically publishing
a ClassAd. The WMS proved to be highly performant and
stable during the ATLAS DC2 production[1], where 20,000
LCG jobs were ran on GridX1 by means of an interface.

LCG

The LCG Compute Element(CE) is deployed on over
100 sites. In order to use the Condor-G WMS, each CE
would need to produce one ClassAd per queue, to describe
the resource capabilities and status. This would involve
considerable effort and cooperation from the LCG deploy-
ment team. Alternatively, there already exists an informa-
tion system in the form of the central BDII which contains
all the required information. A perl script was created to
query this BDII and convert the information into one Clas-
sAd per CE queue. This required no deployment to LCG
CEs. The extra component is shown in Fig.2. In this way,

Figure 2: The Condor-G architecture for LCG showing the
extra component to convert the BDII information into Clas-
sAds.

any manipulation of the information by either the site man-
agers, such as setting the queue status to ’draining’, or by
VO managers, perhaps removing sites which fail critical
tests, was automatically passed on to the Condor-G WMS.

The large scale operation, as an alternative to the LCG
WMS, during DC2 showed a dramatic improvement in the
production rate. This was due to the faster submission rate,
which was able to fill more of the available cpus. A cal-
culation based on the number of cpus and typical length
of job reveals that to keep the resources full a job must
be submitted every 6 seconds. This includes the time to



check its status several times, and get the output when fin-
ished. It was found that the LCG WMS submission took
15-60s, which, together with non-negligible times for sta-
tus requests and getting the output, meant several submis-
sion instances needed to run in parallel. This increased the
required manpower. The Condor-G instance submitted a
job in 0.1s and had negligible status and get-output times.
This is because the Scheduler is local and dedicated. A sin-
gle instance was able to fill the available resources and dou-
ble the previous production rate. The actual dispatch time,
from the Scheduler to the remote gatekeeper, is compara-
ble for a single Scheduler and a single RB - it is in fact the
same Condor-G component in both cases. The observed
Condor-G gain is mainly due to the synchronous submit
stage returning quickly. In other words there would be a
similar throughput for systems consisting of an equal num-
ber of Schedulers and RBs. The strength of the Condor-G
approach is that the scaling is at the Scheduler level, thus
allowing meaningful resource brokerage.

FEDERATING GRIDS

The GridX1 resources have GT2 gatekeepers but are not
associated with LCG, and are not in the LCG information
system. Nevertheless, they can be included in the Condor-
G WMS, and appear just like any LCG CE. This is a form
of federation of Grids, and these resources are currently
used in precisely this way for ATLAS production.

Condor-G also provides clients to several other gate-
keeper types, notably the ARC compute element of Nor-
duGrid. Some 10% of ATLAS resources are accessible
only via ARC CEs, so a system capable of submitting to
both GT2 and ARC is of great interest. As part of the LCG
interoperability project, a BDII was populated with infor-
mation from the ARC CEs. This can easily be converted to
ClassAds, and tests have been performed to do matchmak-
ing and submission across GridX1, LCG and NorduGrid.
This will be extended to submit real ATLAS jobs in the
future.

CONCLUSIONS

A fully functional WMS has been built from off-the-
shelf components provided by the Condor group. After
successful tests on GridX1, the system was deployed on
LCG by converting information from the native informa-
tion system. This proved to be highly performant during
the ATLAS DC2 production, and continues to be the main-
stay of ATLAS production on LCG. Recent developments
to include data location metrics in both the Requirements
and the Rank have been particularly important in reducing
data handling failures due to distant or overloaded storage
elements.

The rapid submission and status requests are a result of
having a local Scheduler and is a response taken for granted
by users of a local batch system. We believe that this is a
highly desirable feature to the user, and a strength of the

Condor-G WMS.
The upcoming GLite compute element is based on

Condor-C - the movement of jobs between Condor Sched-
ulers. Therefore it is anticipated that the Glite CE will be
compatible with the existing Condor-G framework, with
minimal changes. This will be tested on the pre-production
testbed in order to maintain the Condor-G WMS on LCG
after GLite deployment.

ACKNOWLEDGMENTS

The authors wish to thank the Condor team for the stable
software and excellent support. The original concept and
development was driven by the SAMGrid team at FNAL.
We thank LCG for their deployment expertise and also for
not preventing this unplanned access to resources.

REFERENCES

[1] A. Agarwal et al., GridX1: A Canadian Particle Physics Grid,
CHEP 2006, Mumbai, Feb 2006.


