
A DISTRIBUTED FILE CATALOG BASED ON DATABASE REPLICATION

S. Biegluk, V. Pinto Morais, A. J. Peters, P. Tissot-Daguette
CERN, Geneva, Switzerland

Abstract
The LHC experiments at CERN will collect data at a

rate of several petabytes per year and produce several
hundred fi les per second. Data has to be processed and
transferred to many tier centres for distributed data
analysis in different physics data formats increasing the
amount of files to handle.
All these files must be accounted for, reliably and securely
tracked in a GRID environment, enabling users to analyse
subsets of files in a transparent way.
This paper describes a distributed fi le catalogue giving
consideration to the distributed nature of these
requirements. In a GRID environment there is on one
hand a need for a centralized view of all existing files for
job scheduling. On the other hand each site should be able
– for performance reasons - to have autonomy to access
files without the need of centralized services. The
proposed solution meets the need for a local and global
operation mode of a file catalogue. Commands can be
executed autonomously in a local catalogue branch or
heterogeneously in all of them.
The architecture is based on pure replication technology
providing a real time backup. The catalogue implements a
file system like view of a logical name space, user-
defined meta data with schema evolution, access control
lists and common POSIX user/group file permissions.
Architecture, interface functionalities, performance tests
and very promising results in comparison to other existing
GRID catalogues are presented.

ARCHITECTURE
Overview

Every GRID site deploys a fully functional file
catalogue (FC) branch (local catalogue). Each of these
FCs keeps an independent namespace connecting
unambiguously the logical filename (LFN) with access
permissions (ACL), GUID and physical filenames(PFN)
per file entry. Authorization information is kept inside the
local FC and valid only for this specific site! LFN/GUID
translation and authorization for file access is executed
within a site – this operation mode is called in the
following 'local mode'. Through replication of all local
FCs to a central location a 'global' read-only namespace
overlay of all local FC namespaces is created. A global
read operation mode refers to parallel queries to the local
catalogue replicas and allows to gather information about
all existing replica locations of a file (storage index).
The prototype implementation is based on MySQL ([5])

database back-ends and pure replication technology
(MySQL Replication), offering the possibility of having a
real time backup of the distributed catalogue branches at
a central location.
The local mode enables linear scaling of the architecture
through independent site operation, the global mode
satisfies the need for a storage index f.e. for scheduling of
jobs according to data location,
We can distinguish three different kind of local
functionalities:
� File Operations
� Access Control List Operations
� Meta Data Operations
The “global” mode provides identical commands, which
are performed in all connected local catalogues for write
operations or in the central replicas for read operations.
To execute write operations in all local catalogue
branches we replicate a command queue from the central
location to each branch. In each branch a daemon
executes the replicated global commands.
The catalogue database back-ends are not directly
exposed in the client interface. The client talks to a
catalogue front-end service, which is responsible for user
authentication and user role mapping in the FC.

The front-end uses a session token mechanism. Clients
authenticate once to the service using GSI authentication
to obtain a session token. In concurrent calls the SOAP
messages to the catalogue service are encrypted with a
dynamic session token using symmetric CIPHER
technology. The front-end service connects to the DB via
the back-end with a single trusted user identity using
standard DB authentication (password or SSL). This user
owns all databases and tables. We have chosen PERL for
the implementation of the catalogue back-end. The front-
end service executes the back-end code.

Replication
The architecture uses two replication schemata:

� Replication N-Slaves→(N-)Master: this allows a
central(global) view of all catalogue branches and a
real-time backup

� Replication Master→Ν-Slaves: this is used for the
replication of the global command queue.

The databases of each site containing the FC tables were
configured as replication masters. Each MySQL master

records all insertions and modifications to the database
tables binary logfiles, which are corresponding to the
operation done in the file catalogue at each site. The slave
databases (databases at central services) are synchronized
by a MySQL slave replication daemon executing all
statements from the binary log of the master database. As
a result, we have a replication of all site catalogues in a
central machine.
Figure 1 shows an example for a local mode operation.
We consider a user running data analysis in a given site:
1. A user submits an analysis job to be executed in a

computing site, where the data can be read.
An output file containing his analysis results is
registered in the local file catalogue branch of the
executing site.

2. The new entry in the master database is replicated to
the central database replica.

Figure 1 – Local mode operation

Figure 2 illustrates the three steps during a global write
operation:
1. A command is inserted in the global command queue
2. The command is replicated to all file catalogue

branches
3. The command is execution in all local file catalogue

branches

 Figure 2 – Global mode write operation

A global read operation is implemented as a parallel
query on the local FC branch replicas.

Local Catalogue Database Layout
In every local catalogue we use a flat name pace layout

i.e. all logical file names are contained in one table.
Additional information like file meta data or event meta
data is stored in additional flat tables, which can be joined
in queries. This very simple structure was tested to work
well with 100M entries and standard DB machines.
Permissions are stored for every entry identified by a
unique LFN/GUID using the POSIX UID/GID schema or
user defined access control lists (ACLs). The
correspondence LFN↔GUID↔PERM↔TURL is stored
in a primary table which contains the FC information.

Figure 3 – Database Layout

Every user can create/update meta data tables to tag
subset of registered files (implemented by creation of a
view of the primary table). This schema was further
extended to define for every file a list of event IDs, which
can be tagged with user defined meta data on the event
level. FC queries based on meta data or event meta data
are single SQL statements which join corresponding
tables and return all needed information together.

PERFORMANCE TESTS
We have evaluated the performance of the front- and
back-end separately to understand better individual
bottlenecks.
All tests were performed in a LAN environment since the
majority of file and metadata operations are executed in
LAN networks making one of the most important assets
this approach.

Front-End Performance
We used the following test setup:
� Front-end Servers

� 2 x Intel® Xeon™ 2.4 Ghz
� Client

� Intel® Pentium® IV 3 GHz, 512 MB
We measured the secure RTT to send and receive a fully
encrypted request from the client to the front-end server

over a GSI authenticated session connection. The request
and response packets contained approx. 10-20 bytes.

whoami

0
50

100
150
200
250
300
350

1 2 5 10 20

Clients

w
h

o
am

i
/

se
c

 Figure 4 – Secure RTT

The graph shows that we have an average RTT of 3.3
ms/call for 20 clients and around 11.7 ms/call for a single
client. The measurements are stable for increasing packet
sizes until we reach the limit of the network transfer
speed. We can easily avoid bottlenecks in the front-end by
scaling the number of front-end servers according to the
performance of the underlying DB back-end.

Back-End Performance
The database FC performance was tested with the
following setup:
� DB Server

� MySQL 5.0.11 beta on 4 x Intel® Xeon™ 3.06
GHz, 4 GB.

� Client
� Intel® Pentium® IV 3 GHz, 512 MB

The two functionalities as a pure file catalogue and as a
meta data catalogue were tested separately. The number
of concurrent clients was always varied between 1 and 20.
During all tests the MySQL query cache was disabled.
We measured the following results for the FC:
• Insertion File Rate: The maximum number reached

was 522 inserts/sec (Fig 5). The database server had a
similar behaviour with different database size (104, 105

and 106). The same tests were made with bulk
operation; here the maximum reached was 2200
inserts/sec (Fig 6).

Insert Rate

0

100

200

300

400

500

600

1 5 10 15 20
Clients

In
se

rt
s/

se
c

10^4 10^5 10^6

Figure 5 – Insertion rate inserts/sec.

Bulk Insertion

0

500

1.000

1.500

2.000

2.500

1 2 5
Clients

In
se

rt
s/

se
c

Bulk 1000 Bulk 100 Bulk 10

Figure 6 – Bulk operations inserts/sec.

• Replication Delay: We measured the time to replicate
an already populated FC database. The average time for
a DB with 108 records was around 7000 records/sec and
with 107 was 10000 records/sec and was mainly limited
by the available network bandwidth.

• Listing Rate: Here we measured the listing time for a
random directory with 1000 entries. The query was
made 150 times in order to obtain a more accurate
value. Independently of the database size the average

�was 1000 queries/sec.

Listing Rate

0

500

1000

1500

1 5 10 15 20
Clients

Q
u

er
ie

s/
se

c

10^4 10^5 10^6

Figure 7 – Listing rate queries/sec.

 In the following we discuss the results for metadata
operations:

• Metadata Insertion Rate: We measured the
number of insertions per second varying the number
of metadata tags per entry and the number of
concurrent clients. The maximum tag insertion rate
was 587/s with one tag per file and 16 clients. With
an increasing number of tags the insertion rate
decreases slightly. This behaviour is partially
influenced by the network bandwidth limitation,
which we hit for a huge number of tags and not a DB
feature.

whoami

0
50

100
150
200
250
300
350

1 2 5 10 20

Clients

w
h

o
am

i
/

se
c

Secure RTT

Metadata Inserting

0

100

200

300

400

500

600

700

1 5 10 15 20
Clients

R
ec

o
rd

s/
se

c

1 Tag 50 Tags 100 Tags 150 Tags

Figure 8 – Insertion Rate for a TEXT tag.

• Metadata Query Rate: For this test we were selecting
a random float tag value range returning 5000 entries.
The query was repeated 150 times in order to obtain a
more accurate value. Independently of the database size

�the average result was 1 queries/sec returning 5000
entries.

Metadata Listing

0
0,1

0,2
0,3
0,4

0,5
0,6
0,7
0,8
0,9

1 5 10 15 20
Clients

Q
u

er
ie

s/
se

c

1 Tag 50 Tag 100 Tag 150 Tag

Figure 9 – Listing Rate FLOAT

COMPARISONS
There are several evaluations and performance
measurements of the LFC and the FireMan file
catalogues available (see [1] - [4]) . Most evident are
differences in single entry operations for single clients.
Our implementation outperforms the insertion and query
rate of these two alternative implementations by at least
one order of magnitude. The performance of a file
catalogue can be compared to the theoretical insertion and
query rate of the DB back-end used. For our test server
this was in the order of max. 1000-2000 DB operations
per second depending on the size of the query result or on
the data to be inserted. Most FC functions could be be
implemented with two database operations, one for the
access control, one for the insertion or query statement.
This is reflected in the results we obtained.

CONCLUSIONS
We have implemented a prototype of a distributed FC.
The design meets the requirements of site independence
and scalability of a distributed file catalogue as also the
global storage index functionality. The performance of
the local catalogue branches came close to what was
theoretically possible with the used MySQL back-end.
The performance of the global operation mode has not yet
been studied in detail, although replication measurements
show a quasi instantaneous response. The low-level
MySQL replication is the fastest possible implementation
for a file catalogue replica with MySQL back-ends. To
be independent of the DB back-end one might also
consider to replicate high-level catalogue statements (as
already done for global commands) with some
performance penalty. We have shown, that a very simple
structure and database layout allowed to implement a
distributed high performance catalogue for file- and
(event-)metadata. Security and Performance considera-
tions lead to the natural separation between FC front-end
dealing with authentication/authorization and the back-
end implementing all file catalogue functionality.

ACKNOWLEDGEMENTS
This research project was done in the ALICE ([6]) offline
group at CERN ([7]). The authors are funded by CERN ,
byADI/FCT Portugal and by the EGEE project([8]). We
would like to thank all of them for their support or
funding.

 REFERENCES
[1] Craig Munro and Birger Koblitz. Performance

comparison of the LCG-2 and glite file catalogues. In
ACAT 05, May 2005.

[2] Craig Munro, Birger Koblitz, Nuno Santos and
Akram Khan. Performance Comparison of the LCG2 and
gLite File catalogues.

[3] J. Baud, J. Casey, S. Lemaitre, C. Nicholson.
Performance Analysis of a File catalogue for the LHC
Computing Grid. In HPDC 14, 2005.

[4] J. Baud, J. Casey, S. Lemaitre, C. Nicholson, G.
Stewart. LCG Data Management. From EDG to EGEE.

[5] MySQL , The world's most popular open source
database, http://www.mysql.com

[6] ALICE, the ALICE experiment,
http://www.cern.ch/ALICE/

[7] CERN, European Organization for Nuclear
Research, http://www.cern.ch

[8] EGEE, Enabling Grids for E-Science,
http://public.eu-egee.org

