
CREAM: A SIMPLE, GRID-ACCESSIBLE, JOB MANAGEMENT SYSTEM
FOR LOCAL COMPUTATIONAL RESOURCES

P. Andreetto, S. A. Borgia, A. Dorigo, A. Gianelle, M. Marzolla, M. Mordacchini, M. Sgaravatto,
L. Zangrando, INFN Sezione di Padova, Via Marzolo 8, I-35131 Padova, Italy

F. Dvǒrák, D. Koŭril, A. K r̆enek, L. Matyska, M. Mulăc, J. Posṕıs̆il, M. Ruda, Z. Salvet, J. Sitera,
J. S̆krabal, M. Voc̊u, CESNET z.s.p.o., Zikova 4, 160 00 Praha 6, Czech Republic

G. Avellino, S. Beco, A. Cavallini, A. Maraschini, F. Pacini, A. Parrini, C. Scarcella, M. Sottilaro,
A. Terracina, DATAMAT S.p.A., via Laurentina 760, I-00143 Roma, Italy

S. Monforte, M. Pappalardo, INFN Sezione di Catania, via S. Sofia 64, I-95123 Catania, Italy
S. Andreozzi, M. Cecchi, V. Ciaschini, T. Ferrari, F. Giacomini, R. Lops, E. Ronchieri,

V. Venturi, INFN CNAF, viale Berti Pichat 6/2, I-40127 Bologna, Italy
G. Fiorentino, V. Martelli, M. Mezzadri, E. Molinari, F. Prelz,

D. Rebatto, INFN Sezione di Milano, via Celoria 16, I-20133 Milano, Italy
A. Guarise, G. Patania, R. Piro, A. Werbrouck, INFN Torino, Via P. Giuria 1, I-10125 Torino, Italy

Abstract

Efficient and robust system for accessing computational
resources and managing job operations is a key compo-
nent of any Grid framework designed to support large dis-
tributed computing environment. Computing Resource Ex-
ecution and Management (CREAM) is a simple, minimal
system designed to provide efficient processing of a large
number of requests for computation on managed resources.
Requests are accepted from distributed clients via a Web
Service based interface. The CREAM architecture is de-
signed to be a robust, scalable and fault tolerant service of
a Grid middleware. In this paper we describe the CREAM
architecture and the provided functionality. We also discuss
how CREAM is integrated within the EGEE gLite middle-
ware in general, and with the gLite Workload Management
System in particular.

INTRODUCTION

One of the most important functionality of Grid systems
is managing job operations: users can submit, cancel, and
monitor jobs submitted for execution on a Computing Ele-
ment (CE). A CE has a complex structure: it represents the
interface towards a usually large farm of computing hosts
managed by a Local Resource Management System, such
as LSF or PBS. Moreover, a CE should also provide ad-
ditional features apart from those of the underlying batch
system, such as Grid-enabled user authentication and au-
thorization, accounting, fault tolerance and improved per-
formance.

CREAM is a system designed for efficiently manage
a CE in a Grid environment. The goal of CREAM is
to offer a simple, robust and lightweight service for job
operations. CREAM exposes an interface based on Web
Services, which enables a high degree of interoperability
with clients written in different programming languages.

CREAM is a Java application running as an extension of a
Java-Axis servlet inside the Tomcat application server [2].

In this paper we describe the CREAM architecture and
highlight its features.

CREAM FUNCTIONALITY

CREAM main functionality is job submission: users
can submit jobs, described via a classad-based Job De-
scription Language (JDL) expression, to CREAM based
CEs. CREAM JDL is the same language used to describe
job characteristics and requirements in the gLite Workload
Management System (WMS). CREAM supports the exe-
cution of batch and parallel (MPI) jobs; the support of bulk
jobs (i.e. parametric jobs and collections of independent
jobs) is ongoing. CREAM also allows to transfer the In-
put Sandbox (ISB) to the executing node; the ISB is a set
of files needed for the execution of the job, that must be
transferred from the client node and/or from Grid storage
servers. The other typical job management operations (job
cancellation, job status with different level of verbosity and
filtering, job listing, job purging) are supported as well.
Moreover users are allowed to suspend and then restart jobs
submitted to CREAM based CEs.

For what concerns security, authentication (considering
a GSI based framework) is properly supported in all op-
erations. Authorization on the CREAM service is imple-
mented, supporting both VO based policies and policies
specified on the single Grid users.

CREAM ARCHITECTURE

Fig. 1 shows CREAM internal components.
The CREAM application runs as a Java-Axis servlet
on the Tomcat application server. CREAM interacts with
CEMON, which provides asynchronous job status change
notification service, through a CREAM backend which



Figure 1: CREAM internal architecture

implements the Java Java Naming and Directory Inter-
face (JNDI) interface. Requests to CREAM and CEMON
traverse a pipeline of additional components which take
care of authorization issues. CREAM contains a separate
thread (the Journal Manager) which submits requests to
the Local Resource Management System (LRMS) through
an additional component (BLAH) acting as an abstraction
layer for the underlying LRMS.

The CREAM services are available through a Web Ser-
vice interface. The use of Web Services is one of the
key features of CREAM. CREAM is intended to offer job
management facilities to the widest range possible of con-
sumers. This includes not only other components of the
same middleware, but also single users and other hetero-
geneous services. Thus, we need a mechanism that let po-
tential users to be as much free as possible in using their
own tools and languages to interface to CREAM. The Web
Services technology offers all the interoperability charac-
teristics that are needed to fulfill the above requirements.
From the implementation point of view, CREAM is a Java
application which uses Apache Tomcat [2] as application
server; CREAM executes inside an Axis [1] container, and
exposes a SOAP interface.

Cream Backend

The CREAM backend is a permanent memory space
where CREAM stores the data related to the jobs it is man-
aging. the CREAM backend is implemented as a cus-
tom Java-based persistent storage mechanism which im-
plements the Java Naming and Directory Interface [5].
CREAM also creates a directory for each user that suc-
cessfully registered a job. The directory contains all in-
formations about the job, such as its description in form of
a job JDL, the certificate used by the user to submit it, etc.

Journal manager

The Journal Manager (JM) is a pool of threads of
the CREAM main process. User job commands (job sub-
mission requests, job cancellations, etc.) are enqueued into
the JM, which stores them on persistent storage to pre-
serve them in case of system failure. The JM then serves
these requests, interacting with the underlying LRMS
through BLAH. BLAH [11] is an abstraction layer which
provides a uniform interface to different batch systems.
The JM is used to parallelize job submission: multiple job
management commands are simultaneously forwarded to
the LRMS to improve the overall throughput. Commands
submitted by the same user are executed sequentially in the
order they were initially issued, to maintain the causal re-
lationships between commands.

Security

The Grid is a large collaboration and resource sharing
environment. Users and services cross the boundaries of
their respective organizations and then resources can be
accessed by entities belonging to several different institu-
tions. In such a scenario, security issues are of particular
relevance. There exists a wide range of authentication and
authorization mechanisms, but Grid security requires some
extra features: access policies are defined both at the level
of Virtual Organization (VO)s and at the level of single re-
source owners. Both these aspects must be taken into ac-
count. Moreover, as we will see in the next sections, Grid
services have to face the problem of dealing with the del-
egation of certificates and the mapping of Grid credential
into local batch system credentials.

Trust Manager The Trust Manager is the component re-
sponsible for carrying out authentication operations. It is
external to CREAM, and is an implementation of the J2EE
security specifications.

Authentication in CREAM is based on a Public Key In-
frastructure (PKI). Each user (and grid service) willing to
access CREAM is required to present an X.509 format cer-
tificate [9]. These certificates are issued by trusted enti-
ties, the Certificate Authorities (CA). The role of a CA is
to guarantee the identity of a user. This is achieved by is-
suing an electronic document (the certificate) that contains
the user main data and is digitally signed by the CA with its
private key. An authentication manager, such as the Trust
Manager, can verify the user identity by decrypting the cer-
tificate with the CA public key. This ensures that the certifi-
cate was released by that specific CA. The Trust Manager
can then access the user data contained in the certificate and
verify the user identity.

One interesting challenge in a Grid environment is the
so-calledproxy delegation. It may be necessary for a job
running on a CE, to perform some operations which re-
quire proper authentication and authorization support. For
example, we may consider the case where a job running on



a CE has to access a Storage Element (SE) to retrieve or
upload some data.

This aim is achieved in the Trust Manager usingproxy
certificates. Proxy certificates are an extension of X.509
certificate, using RFC3820 proxy-certificates [12]. The
generation of a proxy certificate is as follows. If a user
wants to delegate her credential to CREAM, she has to
contact thedelegation portTypeof the service. CREAM
creates a public-private key pair and use it to generate a
Certificate Sign Request (CSR). This a certificate that has
to be signed by the user with her private key. The signed
certificate is sent back to CREAM. This procedure is sim-
ilar to the generation of a valid certificate by a CA and, in
fact, in this context the user acts as a CA. The certificate
generated so far is then combined with the user certificate,
thus forming a chain of certificates.

The service that examines the proxy certificate can then
verify the identity of the user that delegated its credentials
by unfolding this chain of certificates. Every certificate in
the chain is used to verify the authenticity of the certificate
at the previous level in the chain. At the last step, a CA
certificate states the identity of the user that first issues the
delegated proxy.

Authorization Framework The aim of the authorization
process is to check whether an authenticated user has the
rights to access services and resources and to perform cer-
tain tasks. The decision is taken on the basis of polices
that can be either local or decided at the VO level. Ad-
ministrators need a tool that allow them to easily config-
ure the authorization system in order to combine and inte-
grate both these policies. For this reason, CREAM adopts a
framework that provides a light-weight, configurable, and
easily deployable policy-engine-chaining infrastructure for
enforcing, retrieving, evaluating and combining policies lo-
cally at the individual resource sites.

The framework provides a way to invoke a chain of pol-
icy engines and get a decision result about the authorization
of a user. The policy engines are divided in two types, de-
pending on their functionality. They can be plugged into
the framework in order to form a chain of policy engines at
the administrator choice in order to let him set up a com-
plete authorization system. A policy engine may be ei-
ther a Policy Information Point (PIP) or a Policy Decision
Point (PDP). PIPs collect and verify assertions and capa-
bilities associated with the user, checking his role, group
and VO attributes. PDPs may use the information retrieved
by a PIP to decide whether the user is allowed to perform
the requested action, whether further evaluation is needed,
or whether the evaluation should be interrupted and the user
denied access.

In CREAM both VO and ”ban/allow” based authoriza-
tions are supported. In the former scenario, implemented
via the VOMS PDP, the administrator can specify autho-
rization policies based on the VOs the jobs’ owners belong
to (or on particular VO attributes). In the latter case the ad-
ministrator of the CREAM based CE can explicitly list all

the Grid users (identified by their x.509 DN) authorized to
access CREAM services.

For what concerns authorization on job operations, by
default each user can manage (e.g. cancel, suspend, etc.)
only her jobs. However the CREAM administrator can de-
fine specific ”super-users” who are empowered to manage
also jobs submitted by other users.

Credential Mapping The execution of user jobs in a Grid
environment requires isolation mechanisms for both appli-
cations (to protect these applications from each other) and
resource owners (to control the behavior of these arbitrary
applications). Waiting for the development of solutions
based on the virtualization of resources (VM), CREAM im-
plements isolation via local credential mapping, exploiting
traditional Unix-level security mechanisms like a separate
user account per Grid user or per job. This Unix domain
isolation is implemented in the form of the glexec system,
a sudo-style program which allows executing the user’s job
with local credential derived from the user’s identity and
any accompanying authorization assertions. This relation
between the Grid credentials and the local Unix accounts
and groups is determined by the Local Credential MAP-
ping Service (LCMAPS) [6]. glexec also uses the Local
Centre Authorization Service (LCAS) [7] to verify the user
proxy, to check if the user has the proper authorization to
use the glexec service, and to check if the target executable
has been properly ”enabled” by the resource owner.

WMS INTEGRATION

CREAM services can be accessed directly by the user. A
set of command line utilities which can be used to manage
jobs by directly invoking CREAM methods have in fact
been developed. These command line tools are written in
C++ using the gSOAP library [13].

CREAM functionality can also be used by the
gLite WMS Grid component [8]. This means that jobs sub-
mitted to the gLite WMS can be forwarded for their execu-
tion on CREAM based CEs.

The WMS comprises a set of Grid middleware compo-
nents responsible for the distribution and management of
tasks across Grid resources, in such a way that applications
are conveniently, efficiently and effectively executed.

The CREAM-WMS integration is being done by devel-
oping a separate module, called Interface to Cream Envi-
ronment (ICE). ICE receives job submissions and other job
management requests from the WMS component; it then
uses the appropriate CREAM methods to perform the re-
quested operation. Moreover, ICE is responsible for moni-
toring the state of submitted jobs (see Fig. 2) and for taking
the appropriate actions when the relevant job status changes
are detected (i.e. the trigger of a possible resubmission if a
Grid failure is detected).

The state of a job can be obtained in two different ways.
The first one is by subscribing to a job status change notifi-
cation service implemented by a separate component called



Figure 2: CREAM-WMS integration

CEMON. CEMON [3] is a general-purpose event notifi-
cation framework. CREAM notifies the CEMON compo-
nent about job state changes by using the shared, persis-
tent CREAM backend. ICE subscribes to CEMON noti-
fications, so it receives all status changes whenever they
occur. As a fallback mechanism, ICE can explicitly query
the CREAM service to check the status of ”active” jobs
for which it did not receive any notification for a config-
urable period of time. This mechanism guarantees that ICE
knows the state of jobs (possibly with a coarse granularity)
even if the CEMON service becomes unavailable. Job sta-
tus change informations are sent to the Logging and Book-
keeping (LB) [10] service, a distributed job tracking ser-
vice.

In order to guarantee that the set of jobs managed by ICE
is consistent with those on the CREAM servers, ICE imple-
ments a lease-based protocol to signal its interest in some
jobs. The protocol works as follows: each CREAM job has
a lease time: if the lease time expires and the job is not
terminated yet, CREAM stops and purges the job. ICE is
responsible to periodically renew the lease for all jobs it is
interested to monitor.

CONCLUSIONS

In this paper we described the general architecture
of CREAM, a Java-based Grid CE service. CREAM uses
a Web Service interface to provide features an interface

based on Web Services, a lightweight implementation and
a rich set of features. It is being integrated with the Grid
infrastructure, in particular with the WMS subsystem, by
means of a glue component called ICE.

More detailed informations, including installation in-
structions, interface specification and usage manual
for CREAM can be found at the Web page [4].

ACKNOWLEDGMENTS

EGEE is a project funded by the European Union un-
der contract INFSO-RI-508833. We also acknowledge the
national funding agencies participating in EGEE for their
support of this work.

REFERENCES

[1] Apache software foundation. axis soap container.http:

//ws.apache.org/axis/.

[2] Apache tomcat home page. http://tomcat.apache.org/.

[3] CEMON home page.http://grid.pd.infn.it/cemon/
field.php.

[4] CREAM home page.http://grid.pd.infn.it/cream/
field.php.

[5] Java naming and directory interface (JNDI).http://java.

sun.com/products/jndi/.

[6] Local credential mapping service (LCMAPS) home
page. http://www.nikhef.nl/grid/lcaslcmaps/

lcmaps.shtml.

[7] Site authorisation and enforcement services: LCAS
and LCMAPS. http://www.nikhef.nl/grid/

lcaslcmaps/.

[8] P. Andreetto et al. Practical approaches to grid workload and
resource management in the EGEE project. InProceedings
of CHEP’04, Interlaken, Switzerland, 27 Sept.–1 Oct. 2004.

[9] R. Housley, W. Polk, W. Ford, and D. Solo. Internet X.509
public key infrastructure certificate and certificate revoca-
tion list (CRL) profile, Apr. 2002. Available athttp:
//www.ietf.org/rfc/rfc3280.txt.

[10] D. Koŭril et al. Distributed tracking, storage, and re-use
of job state information on the grid. InProceedings of
CHEP’04, Interlaken, Switzerland, 27 Sept.–1 Oct. 2004.

[11] E. Molinari et al. A local batch system abstraction layer for
global use. InProc. CHEP’06, Mumbai, India, 13–17 Feb.
2006. To Appear.

[12] S. Tuecke, V. Welch, D. Engert, L. Pearlman, and
M. Thompson. Internet X.509 public key infrastructure
(PKI) proxy certificate profile, June 2004. Available at
http://www.ietf.org/rfc/rfc3820.txt.

[13] R. van Engelen.gSOAP 2.7.6 User Guide, 29 Dec. 2005.


