
SCHEMA EVOLUTION AND THE ATLAS EVENT STORE

D. Malon, P. van Gemmeren, Argonne National Laboratory, Argonne, IL 60439, USA

M. Nowak, Brookhaven National Laboratory, Upton, NY 11973, USA
 A. Schaffer, LAL et Univ. de Paris-Sud 11, Orsay, France

Abstract

The ATLAS event data model will almost certainly
change over time. ATLAS must retain the ability to read
both old and new data after such a change, regulate the
introduction of such changes, minimize the need to run
massive data conversion jobs when such changes are
introduced, and maintain the machinery to support data
conversions when they are unavoidable. In database
literature, such changes to the layout of persistent data
structures are known as schema evolution. This paper
describes the approach being taken by ATLAS to deploy
an infrastructure that will robustly support schema
evolution.

OVERVIEW
The ATLAS software framework Athena, based upon

Gaudi [1], supports a clear separation between the
transient objects manipulated by user-defined algorithms
and persistent objects written out. This “conversion” layer
incorporates a converter specific to each type read and
written. For the experiment’s event data model (EDM),
ATLAS uses POOL/ROOT as its storage technology. In
practice, while the EDM has been under development,
data have been written via generic converters that employ
automatic streamer generation capabilities provided by
POOL/ROOT, wherein streamers are derived from
transient class descriptions generated with the SEAL
Reflection dictionary [3]. This approach has spared
developers a great deal of effort—the “converter” layer is
auto-generated—but it couples transient class definitions
to persistent representations. Over the past few years,
ATLAS has largely converged upon an initial definition of
its event data model [2] from event generation through
simulation to reconstruction and analysis objects, and
currently is on its second iteration. In order to manage and
oversee EDM evolution, ATLAS has put into place an
Event (content) Management Board (EMB). The database
group has developed a model that supports quite general
schema evolution, described in the following sections.

The overall schema evolution strategy introduces an
intermediate state representation layer between transient
objects and persistent storage. This allows the transient
EDM to evolve in a managed fashion, because legacy
data impose no restrictions on transient classes seen by
users—legacy data are coupled only to legacy state
representations. Decoupling the persistent model from
the transient serves a second purpose: it allows control
and optimization of persistent event data organization and
storage. One can design the persistent store, rather than

treating it as a core dump of whatever was in transient
memory when events were written. The approach
introduces an extra copy step in memory
(transient state representation persistence), but
measurements show a net gain in speed and disk space.
For example, the current ATLAS transient EDM cannot
take advantage of a ROOT streaming mode known as
“split mode” (more on this later), which would improve
the overall performance, because the model employs
collections of pointers to objects and other constructs that
preclude split mode in ROOT. Further, employing simple
persistent state objects would better exploit ROOT
storage optimization capabilities, and would allow further
compression by utilizing explicit knowledge of the data
model.

Because ATLAS already has a large investment in data
written without an intermediate state representation layer,
the plan for introduction of schema evolution capabilities
provides a means to maintain readability of existing data
written with purely generic streaming technologies.

The Gaudi/Athena conversion layer notwithstanding,
the use of generic streaming has coupled the persistent
and transient models in terms of type names. For
example, once a transient object of type Track has been
streamed as a persistent object of type Track, it can in
general be read back only into a transient Track object.
(The exceptions are few, but important, and ATLAS takes
advantage of them.) If the Track class changes in only
minor ways, then ROOT’s automatic schema evolution
support can cope with the changes; however, this generic
streaming fails when the transient class evolves beyond
the capabilities of ROOT’s automatic schema evolution
support. We describe below how the ATLAS schema
evolution strategy will address access to such legacy data.

TOWARD A TRANSIENT/PERSISTENT
DATA MODEL SEPARATION

In order to allow flexible evolution of the transient
event data model, ATLAS is introducing an intermediate
state model for its EDM. This intermediate state will be
written and read with generic ROOT streamers derived
from class dictionary descriptions, taking advantage of
performance improvements of split mode streaming.
Subsequent evolution will be handled in the Athena
conversion layer, which will manage the persistent-
transient transformations. In the case where one wants to
be able to read old data written without an intermediate
layer and the transient type has evolved beyond automatic
schema evolution capabilities, ROOT custom streamers

will be introduced to stream in this old data. The
following sections describe the approach in a sequence of
stages of increasing complexity: first, how persistence is
handled and intermediate state representations are used in
the absence of legacy data; second, how schema evolution
is supported by this state representation model; third, how

ATLAS expects to be able to handle legacy data--data
written without an intermediate state representation—
once this transient/persistent separation strategy has been
deployed.

ROOT
Custom

Streamer

Persistent
State

Represen-
tation

Transient
Data

Objects

Track

Track

D
ictionary

Legacy Data

Track_p1

Track_p1
D

ictionary

Track

C
onverter

Data written with
T-P Separation

Track_p0
dictionary

Track
(new)

Track_p2

D
ictionary

C
onverter

Track_p2

Track_p0
(copy of Track)

Evolved Data

Con
ver

ter

ROOT
Custom

Streamer

ROOT
Custom

Streamer

Persistent
State

Represen-
tation

Persistent
State

Represen-
tation

Transient
Data

Objects

Transient
Data

Objects

Track

Track

D
ictionary

Legacy Data

Track

Track

D
ictionary

Legacy Data

Track_p1

Track_p1
D

ictionary

Track

C
onverter

Data written with
T-P Separation

Track_p1

Track_p1
D

ictionary

Track

C
onverter

Data written with
T-P Separation

Track_p0
dictionary

Track
(new)

Track_p2

D
ictionary

C
onverter

Track_p2

Track_p0
(copy of Track)

Evolved Data

Track
(new)

Track_p2

D
ictionary

C
onverter

Track_p2

Track_p0
(copy of Track)

Evolved Data

Con
ver

ter

Figure 1: Schema evolution as intermediate state representations are introduced, maintaining readability of
legacy data

Basic Model (No Legacy Data)
In the simplest case, the model is as follows. For a

transient class such as Track, introduce a representation of
Track’s state, say, Track_p1. On output, a converter fills
Track_p1 with the state of Track, and POOL/ROOT
streamers, in general automatically generated, persistify
Track_p1. Track_p1 is designed explicitly with the
eventual persistent layout and potential storage and I/O
performance optimizations in mind. On input,
POOL/ROOT streamers fill Track_p1, and the converter
builds a transient Track from Track_p1.

Basic Model: Schema Evolution (No Legacy
Data)

When the definition of the transient Track changes, a
new state object, Track_p2, is introduced. All new
Tracks are handled as in the basic model, with I/O passing
through the new intermediate state object Track_p2.
When old data are read, POOL/ROOT successfully fills

state objects of type Track_p1—the definition of
Track_p1 has not changed. A new converter, though, is
introduced, one that can build new transient Tracks from
Track_p1 objects. This converter may be hand coded—
after all, the changes to Track could be quite complex—
but no restrictions on changes to Track are imposed by
old data, since old data are coupled only to a state class,
Track_p1, that can be preserved unchanged, and that
physicists never see. The new Track_p1-to-Track
converter is invoked only on input—new data are written
via the Track_p2 path.

Reading Legacy Data
The subtlest issues arise in preserving the readability of

data already written without benefit of an intermediate
state representation while still allowing schema evolution.
While the principles are straightforward, understanding
how the approach is implemented in practice requires
some explanation of ROOT streamers and how they work.
To aid in this understanding, we will describe in the

following sections the various ways to stream objects
with ROOT, the planned use of custom ROOT streamers,
and finally some of the transformations to be employed in
the Athena conversion layer. First, though, we outline the
legacy data support strategy.
The first step in retaining readability of legacy data is to
introduce a new type, Track_p0, which is in fact simply a
clone of the transient Track class, or more precisely, of the
Track class’s data members (its state)—Track’s methods
are irrelevant. If, when an “old” Track is encountered as
input, it can be streamed into the isomorphic class
Track_p0, then a Gaudi/Athena converter can build an
evolved Track from Track_p0. Coercing the underlying
technology to build a Track_p0 when it encounters a
Track (a Foo when it finds a Bar) turns out to be non-
trivial, and sometimes impossible, given current
POOL/ROOT limitations.

ROOT Object Data Storage
ROOT writes objects by streaming them to output

buffers in one of two modes: object mode and split mode.
In object mode, the data members of each object are
converted into a stream of bytes written to a single buffer,
while in split mode each data member is written into its
own output buffer. In general, split mode provides more
efficient read access in two ways: first, the generic buffer
compression produces smaller output files, because buffer
contents are more regular; second, at the ROOT level
individual data member buffers may be read in separately
when only selected data members are needed (e.g., for
histogramming).

In the ATLAS EDM, one typically encounters vectors
of pointers to objects, rather than objects by value. When
the transient EDM is streamed directly, the ROOT-level
storage layer can only utilize object mode rather than split
mode, because pointers may refer to polymorphic types,
which are difficult to split. With the separation of the
transient and persistent models, ATLAS will be able to
ensure that its persistent model can take advantage of the
split mode.

ROOT Custom Streamers
A ROOT custom streamer is a user-defined procedure,

invoked for specialized streaming of objects of a
particular type. A custom streamer can fully control the
streaming of data members, and can execute code that
transforms their values as well. To read legacy data,
ATLAS will use custom streamers for a somewhat
different purpose: to fill an object different than but
equivalent to the originally streamed object. Consider, for
example, the case that a Track has been directly streamed
to persistent storage without passing through an
intermediate state representation, and that the definition
of Track has since changed beyond the limited
capabilities of ROOT automatic schema evolution
support. When such a Track is encountered as input, a
custom Track streamer will be called, and will build an
object of an altogether different but isomorphic class—
Track_p0. Note that this custom streamer need not be

written from scratch; in fact, it can simply invoke a
streamer that was automatically generated for Track_p0
from Track_p0’s dictionary, because of the isomorphism
between Track and Track_p0.

In fact, there can be more than one version of the Track
class in any ROOT file. They are distinguished by a
checksum of the persistent shape. The custom streamer
must use the checksum to select the correct streamer for
reading. Thus a custom streamer can be used for multiple
iterations of an evolving Track class, where Track is
always written in the standard way using the generated
streamer for Track and is read back as Track_p0,
Track_p1, etc. Note that at any one time the reflection
dictionary contains all the needed versions of Track:
Track, Track_p0, Track_p1, etc. However, as we see next,
this capability breaks down for split mode.

ROOT Custom Streamers and Split Mode
ROOT custom streamers might appear at first to be a

good solution for treating schema evolution: it is
sufficient to implement them only when changes actually
occur, without any preparation in advance, they work
transparently to the end user, and they do not propagate
class schema changes to their embedding types (see the
chain reaction effect described below). They have been
proven to treat well CLHEP schema changes when going
from CLHEP v1.8 to v1.9.

Unfortunately, ROOT custom streamers can be used
only for data written in object (non-split) mode. The
current ATLAS EDM is sufficiently complex that very
little of it has been successfully split by ROOT, so
ATLAS will be able to use the custom streamer strategy
described above. Custom streamers will not, however,
provide a long-term solution: ATLAS needs to begin to
take advantage of the improved performance of split
mode. The use of custom streamers must therefore be
limited to only the first step in the sequence of an
evolving transient schema, when one needs to read old
data corresponding to transient objects that were streamed
directly and unsplit.

Data Model Transition
It is natural to ask at what point one should introduce

an intermediate state object like Track_p0 that is,
essentially, simply the transient Track class renamed. It is
needed, strictly speaking, only when the transient class
has evolved beyond the capabilities of automatic schema
evolution. Introducing it at an earlier stage, however,
offers the advantage that data written after its introduction
will be coupled only to Track_p0, rather than to (the
equivalent) Track, freeing Track for schema evolution
without a later need to provide custom streamers. ATLAS
hopes to move to a genuine intermediate state
representation model—one in which the state
representations are defined explicitly with the intention of
organizing persistent data for improved performance—in
a time frame that will render this question moot.

Transient/Persistent Data Model Separation
As the ATLAS EDM evolves, custom ROOT streamers

will maintain the readability of existing data where the
transient types have been streamed out directly. As we
have seen, this involves as a first step the creation of a
persistent state class for the old version of the transient
class. This will be the starting point of fully separated the
transient and persistent classes. This will allow the use of
ROOT split mode, and one can take advantage of the
opportunity to explicitly compress the persistent model.
For example, four-vectors can be saved as floats rather
than doubles, allowing for required precision for the
mass. This separation will accommodate large-scale
redesign of the transient model while retaining the
capability to read old data.

Providing an intermediate state object comes at a cost:
it requires more effort on the part of developers. In early
stages of software development, while classes are
continually changing, developers should not need to think
unduly about how to write and read their objects. Before
producing petabytes of data, though, it makes sense to
think about and perhaps even design the layout of events
in the persistent store, rather than simply relying upon a
core dump of the state of the transient whiteboard.

An Athena converter will be responsible for the
transformation between the persistent and transient
shapes. In Athena, a user algorithm creates one, or more,
top-level objects and registers them in a (event) data store
in memory. These objects are available to other
algorithms and may be streamed out by converters via
POOL. For each object written by POOL a token, or
persistent reference, is returned and saved in a
DataHeader object, which in turn is streamed out with
each set of written objects. On input a DataHeader is first
read in, and then its set of tokens determines which
objects may be subsequently read in. Note that the token
contains both information regarding an object’s placement
and its type in terms of a unique id.

Typically, the top-level object written by a converter is
a collection of objects, which may in turn contain other
embedded objects and possibly smart pointers to objects
in other collections written out separately. These smart
pointers are in ATLAS known as ElementLinks (or
DataLinks, for objects not in a container). On output, the
converters will copy the data members of the transient
objects into persistent objects, which have entries in the
Reflection dictionary. The top level persistent class is
assigned a GUID when creating its dictionary entry, and
this must be changed whenever the persistent class
evolves beyond the automatic schema capabilities of
ROOT. Then on read back the converter can use the
GUID in the token to choose which persistent class to
stream in and create the transient class.

One delicate point is that a change in an embedded
class requiring manual schema evolution will force all of
the top-level collections using this class to move to a new

version – a sort of chain reaction*. This will certainly
have the tendency to simplify the persistent model. The
storage of the inter-object references, i.e., ElementLinks,
does not pose any problem since they work as references
inside the Athena framework and not at the persistence
level. Infrastructure to facilitate developers’ work,
including templated converters and code and dictionary
entry generation, is provided by the database group.

SUMMARY AND CURRENT STATUS
ATLAS has developed a strategy and an infrastructure

to support quite general schema evolution of its event data
model. Exploration of realistic test cases has
demonstrated a 20-30% net increase in read performance.
An Event Management Board has been put into place to
oversee the migration, and ATLAS is currently working
on transforming its event data model over the next several
months, starting with the simulation and raw data, in
preparation for computing system commissioning in
2006, and data-taking in 2007.

ACKNOWLEDGMENT
The submitted manuscript has been created by The

University of Chicago as Operator of Argonne National
Laboratory ("Argonne"). Argonne, a U.S. Department of
Energy Office of Science laboratory, is operated under
Contract No. W-31-109-Eng-38. The U.S. Government
retains for itself, and others acting on its behalf, a paid-up
nonexclusive, irrevocable worldwide license in said
article to reproduce, prepare derivative works, distribute
copies to the public, and perform publicly and display
publicly, by or on behalf of the Government.

REFERENCES
[1] Gaudi Project Portal: http://proj-
gaudi.web.cern.ch/proj-gaudi/welcome.html
[2] Final report of the ATLAS AOD/ESD Definition Task
Force. ATL-SOFT-2004-006;
http://doc.cern.ch//archive/electronic/cern/others/atlnot/N
ote/soft/soft-2004-006.pdf.
[3] Currently ATLAS is using the dictionary services of
Reflection, but will be migrating to Reflex in the near
term. See the SEAL portal for more details:
http://seal.web.cern.ch/seal/

* A ROOT custom streamer is an ideal solution for the case where an
embedded class used in a number of places has changed beyond
automatic schema evolution, but one that only works today for classes in
non-split mode.

