
CLUSTER DISTRIBUTED DYNAMIC SOTRAGE

A. Forti, A. McNab University of Manchester, Manchester UK

Abstract

The HEP department of the University of Manchester
has purchased a 1000 nodes cluster. The cluster will be
accessible to various VOs through EGEE/LCG grid
middleware. One of the interesting aspects of the
equipment bought is that each node has 2x250 GB disks
leading to a total of approximately 400 TB of usable disk
space. The space is intended to be managed using dcache
and its resilience features. The following describes
different dcache configurations and disks and network
layout adopted to exploit this space. Different
configurations can be used to target different use cases.
An alternative method based on http technology will be
also described.

BACKGROUND

The University of Manchester has bought a 1000
nodes, 2000 processors cluster and ~400 TB disk space
available across the nodes. The cluster is mainly
dedicated to High Energy Physics and a small fraction for
other sciences. The cluster is grid enabled, there are 14
active VOs on it and each of them has different storage
requirements depending on their computing model. The
decision of going for commodity computing both for cpu
and storage was driven by two reasons.

The first reason was the most important physics
experiments have tiered structure computing models. The
main difference between Tier0/Tier1s and big Tier2s is
the storage space and the quality of service for it. Tier2s
will have an importance mostly for cpu resources they
cannot afford to supply a safe, i.e. very expensive, storage
and the manpower to support it. However they still need
space for data to be analysed by the end users and to store
the output of production data like simulation or
reconstruction.

The second reason was that the cluster would have
been on the grid. The most important strategy to keep data
safe is resilience. When the environment was not
distributed and each site could rely on ly on local
resources to protest their datas it was obvious that local
backups, more expensive storage or various replication
technologies like raid arrays were necessary. On the grid
everything is connected and this need is not anymore so
compulsory. Data can be replicated across sites, other
Tier2s for example. Resilience is moved a level up.

So in Manchester the decision was to buy as many
cpus as possible and the biggest disks it was possible for

the best price/size ratio at the time. There is no tape
storage behind and no backups are foreseen. The clluster
internal connectivity is 1 Gb/s and is connected to the
external world by the 2.5 Gb/s university production
network. It will be replaced by a 10 Gb/s dedicated link.
High rate data transfers from and to Tier1 are possible.
350 Mb/s was achieved on the shared university
production network.

The aim is to use the disk space on the nodes as a
cache. Since the nodes will serve and process data at the
same time it is important not to overload them with
requests for specific data. Replicas on the cluster itself are
therefore foreseen for load balance rather than for safety.

SOFTWARE

Today there is a choice of different storage
management software that can be installed. To name the
main ones available in the grid environment: dcache [1],
DPM [2] and xrootd [3]. A solution based on http
technology is also being developed in Manchester. At the
eyes of the user there shouldn t be any difference as two
most important characteristics of these softwares are that
they offer a common name space and eventually an srm
interface. However at the eyes of the administrator the
stoarage system has to be scalable and also offer some
automatic data management features. For this and for
historical reasons dcache has been the software of choice.

Dcache

The main dcache characteristics that were looked at:

Combines several hundreds pool nodes under a
single name space.

Support multiple internal and external copies of a
single fuile system entry point

Performs automatic pool to pool copies of datasets
to flatten data access

It has fine grained pool selection (experiment, read
write, internal external, priority)

Cached data are removed only if space is running
short, while precious data are kept even if the
system is hungry for space. Which means pools
can be configured for different needs.

It can maintain a minimum of m to a maximum of
n copies on one system. i.e if a pool with one copy
of the data goes down the number of copies is

maintain constant. This obviously doesn t work if
there is only one copy of the data on the system.
However is very useful for maintainance.

It supports various access protocols

Since it was designed for tape and disk it doesn t
really matter what hardware is underneath so
different type of hardware with different levels of
redundancy can coexist in the same dcache
instance and be flagged differently.

As an aside it has already been used to manage storage
on batch nodes by Fermilab and BNL Tier1s.

Configuration

The system will have front end nodes with two
interfaces. One of the network interfaces will be dedicated
to external transfers and will have an active gridftp door
on it (Figure 1). Since all the nodes have more than a cpu
the griftp door can also have a dedicated cpu. Internal
nodes will only be accessible from other nodes.

Figure 1: Front end nodes configuration

The aim is to optimize the space and minimize the
impact of maintenance. On each node there are (Figure
2):

2 dcache partitions 1 on each disk

2 pools, 1 for each partition

/pnfs mounted

Gsidcapdoor active

No raid arrays will be created it spoils the
independence of the discs. In this way

Disk 2 can be assigned to a particular VO

Disk 1 can be used for resilience.

Disk 1 can be wiped out during installation if
needed

Disk 2 can be left untouched.

Data will have at least 2 copies.

Figure2 : Internal nodes configuration and application
access

Applications

Applications will access data on other nodes using
either gsidcap doors enabled on all the nodes or /pnfs and
LD_PRELOAD environment variable. Root applications
can benefit from the API distributed with root toolkit.

Other solutions

As part of the GridSite project, we have also developed
an HTTP(S) based file storage solution. This makes use of
the GridSite security extensions to the Apache web server
for file access, and an additional layer of file location is
provided by SiteCast, which uses UDP multicast to find
replicas of a given file within the site.

GridSite provide fine grained file access control in
terms of the X.509 digital certificates and VOMS attribute
certificates possessed by users of the LCG and gLite
middleware. In addition, it implements the write methods
PUT, DELETE and MOVE from the HTTP and WebDAV
IETF standards. Combined with directory listings, and the
HTTP HEAD method to query a file's status, this is
sufficient to implement the functionality of a traditional
FTP or GridFTP file server, but with fine grained access
control, based on groups and roles with a VO, rather than
coarse grained access based on the local Unix account
permissions.

This allows individual worker nodes in a farm to give
access to files stored on their disks, but the problem
remains how to located the files. Rather than implement a
heavy weight solution involving a central database
machine, we have chosen to add a multicast responder to
GridSite, to enable the web servers themselves to respond
to queries. Since GridSite creates new files in an atomic
way, by creating a temporary file which is renamed when

Internal nodes access.

Disk 2
250GB

Disk 1
150GB

pool

OS/Home
100GB

gsidcapDoor

Pnfs

pool

Head
node

Disk 2
250GB

Disk 1
150GB

pool

OS/Home
100GB

gsidcapDoor

Pnfs

pool

application
application

application

Internal nodes access.

Disk 2
250GB

Disk 1
150GB

pool

OS/Home
100GB

gsidcapDoor

Pnfs

pool

Disk 2
250GB

Disk 1
150GB

pool

OS/Home
100GB

gsidcapDoor

Pnfs

pool

Head
node

Disk 2
250GB

Disk 1
150GB

pool

OS/Home
100GB

gsidcapDoor

Pnfs

pool

Disk 2
250GB

Disk 1
150GB

pool

OS/Home
100GB

gsidcapDoor

Pnfs

pool

application
application

application

Single external node internals

gridftpDoor

External
world

Disk 2
250GB

Disk 1
150GB

pool

OS/Home
100GB

gsidcapDoor

Pnfs

pool

Head
node

Pnfs
Single external node internals

gridftpDoor

External
world

Disk 2
250GB

Disk 1
150GB

pool

OS/Home
100GB

gsidcapDoor

Pnfs

pool

Disk 2
250GB

Disk 1
150GB

pool

OS/Home
100GB

gsidcapDoor

Pnfs

pool

Head
node

Pnfs

writing has completed, the information about whether a
file exists and what size it is, is available directly from the
file system. This obviates the need to maintain a database,
and means that if worker nodes go offline, their files are
immediately removed from the virtual database. This
SiteCast system uses the IETF's Hypertext Cache Protocol
(HTCP) to communicate queries and responses.

We have also added support for SiteCast queries to the
htcp suite of command line tools supplied with GridSite,
which allows copying of files from virtual SiteCast
locations within a farm to a local disk, and we have begun

design work on a system to give POSIX filesystem access
to files stored on GridSite and located by SiteCast.

REFERENCES
[1] http://www.dcache.org

[2] http://www.grif.fr/article.php3?id_article=16
[3] http://xrootd.slac.stanford.edu

[4] http://www.gridsite.org

http://www.grif.fr/article.php3?id_article=16
http://xrootd.slac.stanford.edu
http://www.gridsite.org

This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.

http://www.daneprairie.com

