
THE DEVELOPMENT AND RELEASE PROCESS FOR THE CMS
SOFTWARE PROJECT

S. Argirò, CERN, Geneva, Switzerland and INFN/CNAF, Bologna, Italy
�

Abstract
Releasing software for projects with large code bases

is a challenging task. When developers are geographi-
cally dispersed, often in different time zones, coordination
can be difficult. A successful release strategy is therefore
paramount and clear guidelines for all the stages of soft-
ware development are required. The CMS experiment re-
cently started a major refactorization of its simulation, re-
construction and analysis software. At the same time, we
revised our software development cycle to improve on re-
lease management, build management, distribution man-
agement and proper quality assurance via unit, regression
and validation tests. In this paper we will report on the
lessons learned from our previous experience and on how
we are improving in the new project.

INTRODUCTION
The CMS collaboration recently decided to undergo a

major revision of its offline and High Level Trigger soft-
ware. This refactorization moved along two main streams:

� Adoption of a completely new Framework [1] for
event processing

� Merge of the separate projects for framework, simu-
lation, reconstruction and trigger into a single project
with a common source tree.

To complete this process in the shortest possible time,
but at the same time guaranteeing consistence and quality
of the product, special requirements were imposed on the
development and release cycle. In particular, the cycle had
to be able to cope with the following features:

� large quantities of code could be ported in a few days
� very frequent releases are required, the time to deliver

has to be as short as possible

RELEASE AND DEVELOPMENT CYCLE
Given the premises we outlined in the above, we set to

deploy release and development procedures to deliver in
the shortest possible time. In particular, we abandoned
the scheme previously adopted in the CMS experiment, in
which each project was released in several steps. In the past
scheme, the project was divided in Subsystems, each with
a clear dependency scheme on each other. The release was
built by releasing the Subsystems in order of dependency.
�

for the CMS Collaboration

In the new scheme, developers submit code using the Cms
Tag Collector described below. They can all submit at any
time, irrespective of the position of their code in the depen-
dency graph. When a change in a package breaks another
package, the nightly build system catches the problem and
emails the package administrator.
Every week, the Release Manager integrates a “prerelease”,
using the last nightly build as a starting point. Every month,
a “release” is issued.

Project Structure
The CMSSW project includes all the functionalities re-

lated to offline data processing. In particular it includes:

� Geant 4 Simulation
� Fast Simulation
� Reconstruction
� High Level Trigger
� Analysis
� Visualization

All the code is kept in a single CVS repository and is
part of the same source tree. Also, it is released as a single
monolithic unit.
The source tree is organized in a hierarchy of two levels:
the first level is called Subsystem and the second level is
called Package. Every package is maintained by develop-
ers, who have the rights to commit code, and administra-
tors, who have the right to commit, tag and submit tags for
integration. The control of these right is done in CVS via
the �����	��
 add on.

Build environment: Scram
CMSSW uses SCRAM [2] as a build and configuration

management system. SCRAM influences the way develop-
ment is carried out, in that it provides the developer an easy
and quick way to set up his environment. SCRAM holds
a database of available projects and versions, typically re-
leases, pre-releases and nightly builds. With two simple
commands, the developer creates an area for the project and
sets its runtime environment. He can then recompile only
the parts of the code of interest, while using other libraries
and include files from the the central project installation.

Nightly Builds
Nightly builds are an important tool to provide develop-

ers a way to check consistency of their code. In CMSSW,



nightly builds are installed as SCRAM projects, providing
the following advantages:

� Developers do not have to spend time in compilation,
they only have to compile the development version of
their packages.

� Developers always have the possibility to stay up with
the latest developments.

CMSSW uses a modified version of the NICOS [3]
nightly build system. Every night the system tries to com-
pile all packages that were submitted for nightly build by
package administrators using the Cms Tag Collector . The
system parses the output of the compiler, and identifies
problems such as compilation errors and link errors. Ad-
ministrators and developers of packages are informed of
such failures automatically via email. The final report is
displayed on a web page, which shows the packages with
problems in red at the top of the list. From this page, the
full logs of the build is accessible as well as the partial log
of a particular package.
We plan to set up a test structure to run tests of each pack-
age nightly and use the same error reporting mechanism.

Tag Collection
When the package administrator thinks the package is

ready to be submitted to the integration system, he applies
a CVS tag to that package. Then uses the ��

����� to publish
the tag. The ��
������ (CMS Tag Collector) consists of a Web
interface to release administration, supported by a MySQL
database back-end. The release manager can open a release
based on an existing set of tags (usually the nightly or an
existing release). The package administrator publishes a
tag, and selects the release for which the tag needs to be
integrated. The collection of tags can be open or closed: in
the case of a closed state, tags are put in a queue to await
the approval of the release manager. In “open” case, all
submitted tags are taken for integration.
Publication of a new tag is notified to developers via email.
The Tag Collector has a number of features that help in
making the release, such as tag queries, differences in tags
between releases, etc. The �	
������ is also used to request
new packages, that have to be approved by the release man-
ager.

Release procedure
Releases can be of two different types:

1. pre-releases

2. releases

Typically, a development cycle consists of 4 pre-releases
before the final release. Pre-releases are intended as check-
points of the development line, and are made mostly for
the developer’s convenience. CMSSW releases are typi-
cally made every month. Monthly planning is done in order

to understand the needs and set the goals for that release.
Typically, a deadline for submission of tags is decided. Af-
ter the deadline, the Release Manager puts the release in
a “closed” state and tries to build the whole system. Sim-
ple integration tests are also ran by the Release Manager,
to make sure the product will not be “dead on arrival”. A
more complete Validation suite is ran after the release.
If compilation or runtime errors are found, the release man-
ager solicits submission of new tags, that he can then ap-
prove using the Tag Collector.

DEVELOPMENT TOOLS AND
DOCUMENTATION

A set of tools is provided in the developer’s runtime en-
vironment:

1. ���������	����������� , to test if the code is compliant with
CMS coding conventions

2. ���������������	����������� , to verify if unnecessary headers
are included

3. ������� �������!��"��	����������� , to generate package depen-
dency graphs and detect circular dependencies

4. ��#�� $��!����� , to check memory usage

This tools are collected in the Ignominy [8] toolkit. Docu-
mentation is a very important issue in a large project. We
provide documentation in two forms. A Reference Manual
is generated using the ��%�&�"�$�� � [5] documentation genera-
tion system. We use ��% &�"�$�� � markup for both document-
ing the code itself and for providing a general description of
each package. We provide templates for package descrip-
tion pages and automatic substitution of certain keywords,
like author, project version, date. The other form of docu-
mentation is a Workbook or User Guide, which is written
using the '(�	��� documentation system.

TESTING INFRASTRUCTURE
Each package can register a set of tests that are ran as a

build target. Tests are of two types:

1. unit tests, for which the ������)��(�	* [6] testing frame-
work is used

2. integration and validation tests, for which the +���#�� [7]
system is used.

In addition, a set of application integration tests is ran
manually by the release manager to provide a quick valida-
tion of the release.

DIFFERENCES WITH PREVIOUS CMS
EXPERIENCE

The main differences with the previous development and
release cycle are the following:



� The CMS offline was split in several projects: ORCA
for reconstruction, COBRA for framework, OSCAR
for simulation, FAMOS for fast simulation. The new
project collects everything in the same code base, with
the advantage of an easier configuration management:
there is no need to keep track of which version of the
reconstruction goes with which version of the frame-
work, for example. The disadvantage is that it is hard
to distribute the software other than in a monolithic
piece.

� Each CMS project was released in a staged manner.
The project had a series of incremental prereleases,
where, in order of dependency, code would appear.
The disadvantage of this approach is that development
lines tend to diverge, as developers typically do not
wait for their turn in the release sequence, but con-
tinue their work. The changes in the packages they
depend upon are detected late. In the new scheme, de-
velopers work constantly on the same code base, and
the nightly build system notifies immediately of pos-
sible problems with dependencies.

� Tag collection was done via email. In the new scheme,
a database is used for tag collection, with the advan-
tage that, in any moment, developers and release man-
agers can check the status of a particular release or
ongoing tag collection.

PLANNED IMPROVEMENTS AND
CONCLUSIONS

The new release procedure adopted for CMSSW has suc-
ceeded in delivering releases very rapidly, as many as three
different releases in a week. This was the most important
goal, given the special nature of the project, that involves
primarily porting and refactoring of existing code.
We do see several ways to improve the robustness of the
development and release cycle:

� Reduce compilation time by parallelizing the build

� Modularize the distribution kit

� Optimize the testing infrastructure

In the coming months, we will be addressing these is-
sues to be in the best possible conditions at the start of data
taking.

REFERENCES
[1] C. Jones et al, The New CMS Event Data Model and Frame-

work, this Conference

[2] http://cmsdoc.cern.ch/Releases/SCRAM/doc/scramhomepage.html
http://cms-nightly.web.cern.ch/cms-nightly/

[3] http://www.usatlas.bnl.gov/computing/software/nicos/
http://cms-nightly.web.cern.ch/cms-nightly/

[4] https://cmsdoc.cern.ch/swdev/CmsTC/

[5] http://www.doxygen.org

[6] http://cppunit.sourceforge.net

[7] http://oval.in2p3.fr/

[8] http://ignominy.web.cern.ch/ignominy/


