
ACCESS TO NON-EVENT DATA FOR CMS

 C. D. Jones, Cornell University, Ithaca, NY 14853, USA

Abstract

In order to properly understand the data taken for an
HEP Event, information external to the Event must be
available. Such information includes geometry
descriptions, calibrations values, magnetic field readings
plus many more. CMS has chosen a unified approach to
access to such information via a data model based on the
concept of an 'Interval of Validity', IOV. This data model
is organized into Records which hold data that have the
same IOV and an EventSetup which holds all Records
whose IOV overlaps with the Event that is being studied.
The model also allows dependencies between Records
and guarantees that child Records have IOVs which are
intersections of the parent Records' IOVs. The
implementation of this model allows the data from a
Record to either be created from a persistent store (such
as a database) or from an algorithm, where the choice is
made by the physicist at job configuration time. The
client code that uses the data from a Record is completely
uneffected (relinking is not even necessary) by the
mechanism used to create the data.

INTRODUCTION
To properly process an HEP Event requires access to

data that is not directly part of the Event. Such data items
are
• Conditions: data measured during data taking,

e.g., the magnetic field.
• Calibrations: data used to properly interpret the

measurements from the detector: e.g., pedestal
values for the silicon pixel detectors.

• Geometry: the physical position of the various
detector components, e.g., the perfect (design)
position and shapes of all materials, or the
measured position of the tracking system.

The system for delivering the non-Event data must be
capable of returning the appropriate data for the particular
Event being processed by the data processing framework.
This paper will describe the system employed by the new
CMS data processing framework [1] to deliver the non-
Event data. The part of the framework that handles the
non-Event data is known as the EventSetup system.

MENTAL MODEL
Interval of Validity

The Interval of Validity, IOV, is the central concept for
the design. An Interval of Validity is the time period for
which a datum is valid. For example, the ECal pedestals
version 123 is valid from run 12 through run 14.

Data is versioned by forming a graph of non-
overlapping Intervals of Validity. Although overlaps are
not allowed within one version, gaps in time when there is
no valid datum are allowed. Figure 1 shows two version
graphs for the same data. Version graph 1 has two
different versions of the data (A and B) with a gap in time
between the two data versions. Version graph 2 also uses
the same two data versions but it has truncated the valid
time range for version A and added a new version, C,
between the original data versions.

Figure 1: Two Version graphs made by chaining
different Intervals of Validity for different versions of
data

EventSetup Model

Figure 2: The EventSetup is formed from the Records
that have an IOV that overlaps with the moment in
time that is being studied

The EventSetup provides a uniform access mechanism
to all data/services constrained by an IOV. The main
concepts for the EventSetup are shown in Figure 2:
• Record: holds data and services that have identical

IOVs.
• EventSetup: provides a ‘snapshot’ of the

experiment at an instant in time. Formed by all
Records that have an IOV which overlap with the
'time' of the Event being studied.

This is not a new idea, the CLEO experiment has been
using the same idea for nearly a decade [2]. The CMS
implementation of this system is directly based on the
work done for CLEO.

IMPLEMENTATION
EventSetup

The EventSetup class provides type-safe access to the
various Records it contains. This access is done through
the EventSetup's get<RecordT>() method. If the
requested Record is not available, an exception will be
thrown. There is also an interface to get data directly from
an EventSetup instead of from a Record for the case
where the data type has been assigned a 'default' Record.
The direct data access interface is discussed later.

In addition to access to Records, the EventSetup has a
method iovSyncValue() which return information about
the 'instance in time' for which the EventSetup is
describing.

Records
Each Record is a separate C++ class inheriting from a

common base class. This allows the compiler to catch
name typos and is used to do C++ template meta-
programming (described later). Records provide type-safe
access to the objects it contains. The access is handled
through the Record's get(ESHandle<T>&) method. This
is analogous to data access from the Event.

A Record also provides access to its interval of validity
(IOV) through its validityInterval() method.

Contents of a Record
The EventSetup system sets no requirements on the

C++ class type of an object that may be placed in a
Record. The only restriction is the lifetime of the objects
within a Record is only guaranteed to be as long as the
IOV for which the Record is appropriate. This does not
mean that an object within a Record cannot be reused
across an IOV transition; it only means code that reads
the object from a Record should not assume that it will be
reused.
In the case where a data/service C++ type is only meant to
come from one Record type, then the 'default' Record type
can be declared at compile time. If a 'default' Record has
been declared for a data type, then users can access that
data directly from the EventSetup via the
get(ESHandle<T>&) method.

USAGE
A const instance of the EventSetup is passed as an

argument to the Event system components processing
method. An example is shown below.

void Example::produce(
 Event& event, const EventSetup& eventSetup) {
 ESHandle<TrackerGeometry> geomPtr;
 eventSetup.get<TrackerAlignmentRecord>()
 .get(geomPtr);

In the example we are requesting the TrackerGeometry
object. The smart pointer ESHandle<> will hold this
object. We first ask the EventSetup for the proper Record
(in this case TrackerAlignmentRecord) and then get the
data from the Record by passing the ESHandle<>. The

system determines the type of the data being requested
based on the template argument of the ESHandle<>. The
type is then used to lookup the data from within the
Record. If a default Record has been assigned to the data
at compile time, then the data can be directly requested
from the EventSetup:

eventSetup.getData(geomPtr);
The use of a ‘smart pointer’ to hold the results of the data
rquest is completely analogous to how the Event system
operates.

Handle<PixelDigi> digiPtr;
Event.getByLabel(“barrel”, digiPtr)

The similarity between the Event and EventSetup data
access should make it easier for physicists to use both
systems.

SYSTEM COMPONENTS
The EventSetup system design, uses two categories of

dynamically loadable components to do the work of
creating or reading the data: ESSource and ESProducer.

 ESSource
An ESSource is responsible for determining the IOV of

a Record (or a set of set of Records). The ESSource may
also deliver data/services. An ESSource normally reads
its information from a 'persistent store' (e.g., a database)
although it is not required to do so. For example, one
could write an ESSource which reads calibration
information from a database using the run number as an
index.

ESProducer
Conceptually, an ESProducer is an algorithm whose

inputs to its algorithm are dependent on data with IOVs.
This data is obtained by getting it from EvenetSetup
Records. For example, an ESProducer could create the
tracking geometry based on alignment values and
structural information obtained from different Records.

CONFIGURATION
EventSetup components are configured using the same

configuration mechanism as their Event counterparts, i.e.,
via the ParameterSet system. An example of the
ParameterSet configuration language is shown below:

 es_source = GeometryFileSource {
 string filename = “geom.xml” }
 es_source = CalibrationDBSource {
 using standardDBConfiguration
 string version = “v1”
 string tag = “RECO” }
 es_module = TrackerGeometryProducer { }

The es_source keword states that the component to be

loaded is an ESSource, while the es_module keyword
states that this is an ESProducer (this matches the use of
source and module used to configure components that
deal with Events). The name after the equals sign is the

C++ type of the component that should be dynamically
loaded. Within the curly braces are the various parameter
names and values used to configure the component.

Once configuration is complete, which is before the
first Event is processed, all EventSetup (and Event)
components that will be used in the job will have been
dynamically loaded. This guarantees that any load
problems will have been caught before any time-
consuming event processing has occurred.

DATA RETRIEVAL
To a physicist, the EventSetup appears to contain all the

data necessary for the Event being processed. However,
preloading or computing all data associated with an Event
could be costly, especially if some of that data is never
used. Therefore the EventSetup system employs ‘data on
demand’, i.e., the data is only loaded or computed the first
time it is requested. Because ESProducrs can be
dependent on other data in the EventSetup, it is possible
for a data request to start a whole chain of data
processing. An example is shown in Figure 3. In the
example, the EDProducer (which is an Event processing
component) named Tracker requests the tracking
geometry description. The request is dispatched to the
TrackerGeometry ESProducer which then requests the
‘perfect’ geometry description from the Geometry Source
and the alignment displacements from the Alignment DB.
Once the new tracking geometry has been created, it is
returned to the Tracker module.

Figure 3: Example of data on demand

IOV DEPENDENCIES
Sometimes an algorithm in the EventSetup is dependent

on data coming from more than one Record. For example,
the tracking geometry is dependent on the 'ideal geometry'
and on the tracking alignment values. In such a case the
Record used by that algorithm needs to be declared
'dependent' on the other Records. This dependency
declaration is done by having the dependent Record
inherit from DependentRecordImplementation<T,List>.
The template parameter TList is a compile time list of the
Records upon which this Record is dependent.

Dependent Records allow access to the Records to
which they are dependent via the getRecord<T>()
method. The TList is used at compile time to check that
the T used in the method is actually in the list.

The IOV of a dependent Record is the intersection of
the IOV of all the Records to which it depends. The

EventSetup system guarantees that the proper
relationships between the IOVs are preserved.

CREATING A COMPONENT
To better understand what is involved in creating a

component, an example of an ESProducer is shown
below.

MyProd::MyProd(const ParameterSet& iPS) {
 setWhatProduced(this);
}

auto_ptr<MyData>
MyProd::produce(const MyRecord& iRecord) {
 ESHandle<OtherData> otherPtr;
 iRecord.get(otherPtr);
 auto_ptr<MyData> myPtr(...);
 return myPtr; }

The call to setWhatProduced in the constructor deduces
what data the MyProd produces (in this case a MyData)
as well as what Record that data should be placed (in this
case the MyRecord) from the return value and arguments
to the produce method. The data and Record type are used
to register what the ESProducer can do so that the data
retrieval can work. This allows developers to just change
the produce method and not have to worry about updating
the registration information. Because the produce method
only has access to one Record type (or to the Records that
have been declared as dependencies of that Record) the
data produced will automatically have the proper IOV.

CONCLUSION
CMS’ new data processing framework employs a

unified data model for all non-Event data. This data
model is based on the concept of an Interval of Validity
and is accessed via Records held by the EventSetup. This
unified data model means physicists only have to learn
one set of rules to access all non-Event data.

The EventSetup system design employs C++ type safe
data access, ‘data on demand’, guaranteed consistency
between related IOVs and C++ object lifetime
management. The actual work of creating the non-Event
dat is handled by dynamically loaded components.

Based on the experience from the CLEO experiment,
the EventSetup system should be sufficient to provide for
all CMS’ non-Event data needs.

ACKNOWLEDGEMENTS
This work was supported by the National Science

Foundation and the U.S. Department of Energy.

REFERENCES
[1] C. Jones, M. Paterno, J. Kowalkowski, L. Sexton-

Kennedy, W. Tanenbaum “The New CMS Event
Data Model and Framework”, International
Conference on Computing in High-Energy Physics
and Nuclear Physics, Mumbai, India (2006).

[2] C. Jones, S. Patton, M. Lohner, P. Avery, “Design
and Implementation of the CLEO III Data Analysis
Model”, International Conference on Computing in High-

Energy Physics and Nuclear Physics, Berlin, Germany
(1997).

