Computing Challenges in Lattice QCD

Rajiv V. Gavai
T. I. F. R., Mumbai, India
Computing Challenges in Lattice QCD

Rajiv V. Gavai
T. I. F. R., Mumbai, India

Introduction: Why & How
Computing Challenges
Current Scenario
Summary
Introduction : Why Lattice QCD

• QCD — A (Gauge) Theory of interactions of quarks-gluons.

• Similar to structure in theory of electrons & photons (QED).
Introduction: Why Lattice QCD

- QCD — A (Gauge) Theory of interactions of quarks-gluons.
- Similar to structure in theory of electrons & photons (QED).
- Unlike QED, the coupling is usually very large and its eight “photons” interact amongst themselves.
Introduction: Why Lattice QCD

- QCD — A (Gauge) Theory of interactions of quarks-gluons.

- Similar to structure in theory of electrons & photons (QED).

- Unlike QED, the coupling is usually very large and its eight “photons” interact amongst themselves.

- Very high interaction (binding) energies. E.g., \(M_{Proton} \gg (2m_u + m_d) \), by a factor of 100 → Understanding it is knowing where the visible mass of Universe comes from.

- Much richer structure and phenomena: Quark Confinement, Dynamical Symmetry Breaking, Quark-Gluon Plasma, Colour Superconductivity..
QCD defined on a space time lattice – Best and Most Reliable way to extract Predictions for non-perturbative physics.
QCD defined on a space time lattice – Best and Most Reliable way to extract **Predictions** for non-perturbative physics.

 Pedido Hadron masses come out (almost) right.

(From MILC Collaboration 2004, USA)
QCD defined on a space time lattice – Best and Most Reliable way to extract **Predictions** for non-perturbative physics.

♥ Hadron masses come out (almost) right.
(From MILC Collaboration 2004, USA)

♥ Strong Coupling Constant α_s computed from underlying theory.

♥ Heavy Meson properties predicted: m_{B_c}, f_B, f_D.
- Lattice ideal tool to establish the QCD phase diagram and the properties of the new phases.
• Lattice ideal tool to establish the QCD phase diagram and the properties of the new phases.

• Quark-Gluon Plasma, such a new phase, expected in Heavy ion Collisions.
• Lattice ideal tool to establish the QCD phase diagram and the properties of the new phases.

• Quark-Gluon Plasma, such a new phase, expected in Heavy ion Collisions.
- Lattice ideal tool to establish the QCD phase diagram and the properties of the new phases.

- Quark-Gluon Plasma, such a new phase, expected in Heavy ion Collisions.

- New States at High Density & Temperatures, expected on basis of models.
 (Figure from H. Stöcker)
• The Transition Temperature T_c (~ 170 MeV) and Equation of State (EOS) have been predicted by lattice QCD.
• The Transition Temperature T_c (~ 170 MeV) and Equation of State (EOS) have been predicted by lattice QCD.

$N_t = 4$ Lattices

Bielefeld 2001 (Karsch hep-ph/0103314)

$N_t = 6$ Lattices

Bernard et al., MILC hep-lat/0509053.
- The Transition Temperature $T_c \sim 170$ MeV and Equation of State (EOS) have been predicted by lattice QCD.

N_t = 4 Lattices
Bielefeld 2001 (Karsch hep-ph/0103314)

N_t = 6 Lattices
Bernard et al., MILC hep-lat/0509053.

- Other quantities for Heavy Ion Physics: the Wróblewski Parameter λ_s, J/ψ-dissolution, dileptons, speed of sound, transport coefficients... etc.
• λ_s — Measure of Production of strange quark-antiquark pairs; Expts agree with estimates from the new state Quark-Gluon Plasma.
 — Lattice QCD suggests that strangeness carried by quark-like objects
 — Robust correlations like BQ are better observables.
• λ_s — Measure of Production of strange quark-antiquark pairs; Expts agree with estimates from the new state Quark-Gluon Plasma.
— Lattice QCD suggests that strangeness carried by quark-like objects
— Robust correlations like BQ are better observables.

Lattice QCD has yielded information on the critical point of QCD, which may be discovered in energy scans at RHIC (Open circle from Fodor-Katz JHEP 2002).
Basic Lattice QCD
Discrete space-time: Lattice spacing a UV Cut-off.
• Discrete space-time: Lattice spacing a UV Cut-off.

• Quark fields $\psi(x)$, $\bar{\psi}(x)$ on lattice sites.

• Gluon Fields on links: $U_\mu(x)$
• Discrete space-time: Lattice spacing a UV Cut-off.

• Quark fields $\psi(x), \bar{\psi}(x)$ on lattice sites.

• Gluon Fields on links: $U_\mu(x)$

 • Gauge transform $V_x \in SU(3)$
 $\Rightarrow \psi'(x) = V_x \psi(x)$,
 $U'_\mu(x) = V_x U_\mu(x)V^{-1}_{x+\hat{\mu}}$.

• Gauge invariance: Actions from Closed Wilson loops, e.g., plaquette.
• Discrete space-time: Lattice spacing a UV Cut-off.

• Quark fields $\psi(x)$, $\bar{\psi}(x)$ on lattice sites.

• Gluon Fields on links: $U_\mu(x)$

• Gauge transform $V_x \in SU(3)$

 $\Rightarrow \psi'(x) = V_x \psi(x)$, $U'_\mu(x) = V_x U_\mu(x) V^{-1}_{x+\hat{\mu}}$.

• Gauge invariance: Actions from Closed Wilson loops, e.g., plaquette.

• Fermion Actions: Staggered, Wilson, Overlap..
Typically, we need to evaluate

\[
\langle \Theta(m_v) \rangle = \frac{\int DU \exp(-S_G) \Theta(m_v) \ Det \ M(m_s)}{\int DU \exp(-S_G) \ Det \ M(m_s)} ,
\]

where \(M \) is the Dirac matrix in \(x, \) colour, spin, flavour space for fermions of mass \(m_s, \) \(S_G \) is the gluonic action, and the observable \(\Theta \) may contain fermion propagators of mass \(m_v. \)
Typically, we need to evaluate

\[
\langle \Theta(m_v) \rangle = \frac{\int DU \exp(-S_G)\Theta(m_v) \det M(m_s)}{\int DU \exp(-S_G) \det M(m_s)} ,
\]

(1)

where \(M \) is the Dirac matrix in \(x \), colour, spin, flavour space for fermions of mass \(m_s \), \(S_G \) is the gluonic action, and the observable \(\Theta \) may contain fermion propagators of mass \(m_v \).

Lattice scaffolding must be removed: Continuum limit \(a \to 0 \).

\(\leadsto \) Computer Simulations, \(\langle \Theta \rangle \) is computed by averaging over a set of configurations \(\{U_\mu(x)\} \) which occur with probability \(\propto \exp(-S_G) \cdot \det M \).
Typically, we need to evaluate

\[\langle \Theta (m_v) \rangle = \frac{\int DU \exp(-S_G) \Theta (m_v) \text{Det } M(m_s)}{\int DU \exp(-S_G) \text{Det } M(m_s)} , \] (1)

where \(M \) is the Dirac matrix in \(x \), colour, spin, flavour space for fermions of mass \(m_s \), \(S_G \) is the gluonic action, and the observable \(\Theta \) may contain fermion propagators of mass \(m_v \).

Lattice scaffolding must be removed: Continuum limit \(a \to 0 \).

\[\Rightarrow \text{Computer Simulations, } \langle \Theta \rangle \text{ is computed by averaging over a set of configurations } \{ U_\mu (x) \} \text{ which occur with probability } \propto \exp(-S_G) \cdot \text{Det } M. \]

Monte Carlo integrations of a few million dimensional integrals.
Typically, we need to evaluate

$$\langle \Theta(m_v) \rangle = \frac{\int DU \exp(-S_G) \Theta(m_v) \ Det M(m_s)}{\int DU \exp(-S_G) \ Det M(m_s)} , \tag{1}$$

where M is the Dirac matrix in x, colour, spin, flavour space for fermions of mass m_s, S_G is the gluonic action, and the observable Θ may contain fermion propagators of mass m_v.

Lattice scaffolding must be removed: Continuum limit $a \to 0$.

Computer Simulations, $\langle \Theta \rangle$ is computed by averaging over a set of configurations $\{U_\mu(x)\}$ which occur with probability $\propto \exp(-S_G) \cdot Det M$.

Monte Carlo integrations of a few million dimensional integrals.

Complexity of evaluation of $Det M \implies$ approximations: Quenched ($m_s = \infty$ limit) and Full (low $m_s = m_u = m_d$) \bowtie Computer time \uparrow and Precision \downarrow.
Computing Challenges

• Variety of interesting problems and corresponding challenges. Broadly two classes — A) Algorithmic and B) Large-scale or precision dominated.
Computing Challenges

• Variety of interesting problems and corresponding challenges. Broadly two classes — A) Algorithmic and B) Large-scale or precision dominated.

• Algorithmic — QCD at finite density or faithful representation of quarks (chirality and flavour) examples of such problems. Caused by complex $\det M$ and highly nonlocal M respectively.
Computing Challenges

- Variety of interesting problems and corresponding challenges. Broadly two classes — A) Algorithmic and B) Large-scale or precision dominated.

- Algorithmic — QCD at finite density or faithful representation of quarks (chirality and flavour) examples of such problems. Caused by complex det M and highly nonlocal M respectively.

- Spectacular progress on these recently, as evident from QCD critical point determination and results on f_B etc. Algorithms still tedious, too crude or restrictive. Breakthroughs necessary.
Computing Challenges

• Variety of interesting problems and corresponding challenges. Broadly two classes — A) Algorithmic and B) Large-scale or precision dominated.

• Algorithmic — QCD at finite density or faithful representation of quarks (chirality and flavour) examples of such problems. Caused by complex det M and highly nonlocal M respectively.

• Spectacular progress on these recently, as evident from QCD critical point determination and results on f_B etc. Algorithms still tedious, too crude or restrictive. Breakthroughs necessary.

• Large-scale— such as QCD spectrum or thermodynamics for realistic light quark (physical pion) masses. Need large lattices to have reasonable box size in units of m_{π}^{-1}, i.e., more computational power.
Most CPU time in full QCD simulations goes in obtaining the quark propagator M^{-1} by using Conjugate Gradient, i.e., in solving $M \cdot X = r$, for a given source vector r.

Main computations thus are A) Sparse Matrix times a Vector and B) Global Sums in complex arithmetic.
• Most CPU time in full QCD simulations goes in obtaining the quark propagator M^{-1} by using Conjugate Gradient, i.e., in solving $M \cdot X = r$, for a given source vector r.

• Main computations thus are A) Sparse Matrix times a Vector and B) Global Sums in complex arithmetic.

• Suitable for both parallelization and vectorization. Both aspects have been exploited efficiently in Lattice QCD computations.

• Lattice QCD experts are actively involved in design and development of new parallel technology in hardware and software.
Current Scenario

- Factors governing choice of machines:
 - Processor – high sustained performance for QCD code, large cache, fast interface to memory/network.
 - Memory & Network – Sufficient external memory with low latency and high bandwidth access. Network topology important.
Current Scenario

- Factors governing choice of machines:
 - Processor – high sustained performance for QCD code, large cache, fast interface to memory/network.
 - Memory & Network – Sufficient external memory with low latency and high bandwidth access. Network topology important.
 - Ease of Programming – Standard Languages (C/C++, Fortran), Efficient compilers and system libraries.
 - Costs – Machine (Hardware/Software) and Operational costs like Power and Cooling.
 - Space Requirement.
Lattice results have been (will be) obtained with

- Custom-Design machines, e.g.,
 * CP-PACS(Tsukuba)
 * QCDSP/QCDOC (Columbia),
 * Ape/Apemille/Apenext(Italy/Europe)
• Lattice results have been (will be) obtained with

 – Custom-Design machines, e.g.,
 * CP-PACS(Tsukuba)
 * QCDSP/QCDOC (Columbia),
 * Ape/Apemille/Apenext(Italy/Europe)

 – Commercial supercomputers, e.g.,
 * Hitachi, CRAY,..
 * SGI Altix, IBM BlueGene/L
• Lattice results have been (will be) obtained with

 – Custom-Design machines, e.g.,
 ∗ CP-PACS(Tsukuba)
 ∗ QCDSP/QCDOC (Columbia),
 ∗ Ape/Apemille/Apenext(Italy/Europe)

 – Commercial supercomputers, e.g.,
 ∗ Hitachi, CRAY,..
 ∗ SGI Altix, IBM BlueGene/L

 – PC Clusters, e.g., Wuppertal, JLAB, Fermilab
Our Main Workhorse

CRAY X1 of I L G T I , T I F R, Mumbai
Strong Scaling: Problem size fixed
Hybrid Monte Carlo – Full QCD

![Graph showing speed vs. number of processors for IBM p690 @ 1.7 GHz & Cray]

- IBM
- Cray
- HP
Strong Scaling: Problem size fixed
QCDOC - Clover Conjugate Gradient

P. A. Boyle et al., NP B(PS) 140 (2005) 169.
Weak Scaling : Local volume fixed
Staggered Fermion Conjugate Gradient

From D. J. Holmgren.
Scaling: BlueGene/L
Wilson Fermion Conjugate Gradient

Future Prospects

• PC Clusters will continue to play a major role.
 – Jlab and Fermilab – 1000 node Infiniband
 – PACS-CP (Tsukuba) – 2560 node Xeon
Future Prospects

• PC Clusters will continue to play a major role.
 – Jlab and Fermilab – 1000 node Infiniband
 – PACS-CP (Tsukuba) – 2560 node Xeon

• So will commercial supercomputers, e.g.,
 – IBM BlueGene/P, successor to BlueGene/L
 – CRAY Black Widow successor to X1, Strider 3
 – Fujitsu has plans for 3 PFlops by 2010

• Custom-Design machines?
Summary

- Thanks to the continual advances in computers and networks, Lattice QCD has taken giant leaps. It **predicts** new states of strongly interacting matter and is able to shed light on the properties of the Quark-Gluon plasma phase.
Summary

- Thanks to the continual advances in computers and networks, Lattice QCD has taken giant leaps. It **predicts** new states of strongly interacting matter and is able to shed light on the properties of the Quark-Gluon plasma phase.

- These results have had a strong impact on SPS/RHIC heavy ion physics and B-physics. Expect the trend to continue in future at LHC,..
Summary

- Thanks to the continual advances in computers and networks, Lattice QCD has taken giant leaps. It **predicts** new states of strongly interacting matter and is able to shed light on the properties of the Quark-Gluon plasma phase.

- These results have had a strong impact on SPS/RHIC heavy ion physics and B-physics. Expect the trend to continue in future at LHC...

- Custom-design machines for Lattice QCD seem to have impact on commercial scene as well, e.g., BlueGene/L.
Summary

- Thanks to the continual advances in computers and networks, Lattice QCD has taken giant leaps. It predicts new states of strongly interacting matter and is able to shed light on the properties of the Quark-Gluon plasma phase.

- These results have had a strong impact on SPS/RHIC heavy ion physics and B-physics. Expect the trend to continue in future at LHC,

- Custom-design machines for Lattice QCD seem to have impact on commercial scene as well, e.g., BlueGene/L.

All three avenues, i.e., custom-designed machines, commercial supercomputers and PC clusters, likely to continue playing important role in future.