
 DATA AND COMPUTATIONAL GRID DECOUPLING IN RHIC/STAR – AN

ANALYSIS SCENARIO USING SRM TECHNOLOGY

E. Hjort*, L. Hajdu, J. Lauret†,

D. Olson*, A. Sim*, A. Shoshani*

*
 LBNL, Berkeley, CA, 94720, USA
†
 BNL, Upton, NY 11973 USA

Abstract
 In this paper, we describe the integration of Storage

Resource Management (SRM) [1] technology into the

grid-based analysis computing framework of the STAR

experiment at RHIC. Users in STAR submit jobs on the

grid using the STAR Unified Meta-Scheduler (SUMS) [2]

which uses Condor-g [3] to send the jobs to remote sites.

The input and output files are transferred between sites by

2-step transfers utilizing a DRM running at each site. In

each case one transfer is a local transfer between the

remote site worker node where the job was executed to

and remote site DRM cache, and the other transfers are

between the remote site DRM to the submission site

DRM. The advantages of this method include SRM

management of transfers to prevent gatekeeper overload,

release of the remote worker node after initiating the

second transfer so that the computation and data transfer

are independent tasks, and seamless mass storage access

if HRM’s are used. Additionally, this light weight storage

solution requiring only a few client executables on the

worker node and one instance of a server process at each

site could be deployed “on the fly” providing information

is available as per the manageable storage at a target site.

This makes our approach the sole Storage Element

solution deployable a-posterior and requiring little human

intervention while providing all the benefits of SRM

managed space, optimizing the storage accessible by a

given virtual organization.

STAR GRID COMPUTING OVERVIEW

Grid Computing Objectives

STAR is a TPC-based experiment at the Relativistic

Heavy Ion Collider (RHIC) [4]. Over the past five years

STAR has generated hundreds of TB of DST-level files

for user analysis, and distributed those files between

STAR’s computing sites using SRM technologies for bulk

file transfer. STAR is also a member VO (Virtual

Organization) in the Open Science Grid (OSG)

consortium and this paper will describe our efforts to

integrate SRM technologies with the STAR Unified

Meta-Scheduler (SUMS) to run grid jobs on OSG sites

providing SRM/DRM storage elements.

While simulation based production has been tackled by

many virtual organization, the problem of accessing grid

resources for user analysis has been sparse. One of the

main reasons is the absence of a convenient mechanism to

bring files in and out of a site, considering the perhaps too

rich (but needed) site policies, firewall rules or acceptance

and availability of tools managing storage. Such tools and

middleware have seen their existence in concrete

implementation and deployment such as Xrootd [5] or

dCache [6], managing large pools of space usually with a

back-end handshake with mass storage. However, they

are often either difficult to deploy or serve only reserved

or dedicated space allocated to specific VO’s. This is

inadequate for opportunistic running on the Grid, the grail

of the distributed computing program and at the very

heart of user analysis. While the problem may be

complex, simple and lightweight approaches could be

employed to resolve this important issue providing a

careful and staged approach. For user analysis jobs our

first objective is to develop a seamless, grid-based, OSG-

compliant method for users to run their jobs at any and all

STAR institutions. The next objective would be to extend

the method to non-STAR sites which would include OSG

sites and possibly sites on other grids as well. Grid

computing at STAR institutions offers advantages such as

load balancing across sites and convenient access to

remote resources, and eventually running on non-STAR

sites would give users access to even more resources.

STAR Analysis Jobs

Local, non-grid STAR analysis jobs are based on SUMS

for job submission. STAR users have been using SUMS

almost exclusively for local job submission for about

three years. The user describes the set of input files to use

or the dataset he task need to work on, a description of the

job execution (program and argument) and a destination

for the output files in an xml input file. SUMS then

performs the appropriate queries of the STAR file

catalogue, constructs a job execution script, and submits

the jobs to the local batch system. Details such as batch

system syntax and matching execution node with locally

stored files are handled internally by SUMS so that users

can utilize different sites through a common interface.

SUMS is also in use for grid-based job submission to

remote sites. In this mode SUMS submits the jobs to

Condor-g which then submits them across the grid to the

remote site. Again, the details of the remote submission

and execution are hidden from the user and from the

user’s point of view the process is very similar. An

important difference between local and remote job

execution is that all files related to a job must be

transferred across the WAN in a non-local scenario.

SUMS uses a number of methods to do this. For small

files such as scripts SUMS uses Condor-g to transfer them

as input files, and stderr and stdout are also left handled

by Condor-g using the gridmonitor instead of file

streaming. For larger input and output files, however, a

managed, scalable approach is needed so that the

computational quanta is not held hostage by a workflow

which would be part of a unique script, executing on a

worker node. In other words, decoupling of computational

and storage resources must be achieved to allow efficient

use of computational resources and best stability. To

reach this goal, we have adopted DRM-managed gridftp

transfers.

Figure 1. Schematic illustration of the STAR Analysis Method showing DRM installations at both

the submission site and the remote execution site along with remote site worker nodes.

DRM Description
DRM stands for Disk Resource Manager [1] and

consists of a server managing a disk cache area. Some of

the functionality of a DRM includes space reservation,

pinning/unpinning of files, automatic disk space

management and configurable file transfers. By using

appropriate settings the load on the gatekeeper running

the DRM may be controlled, for example, by limiting the

number of concurrent gridftp transfers. If there are not

enough gridftp sessions available to transfer a file then

that file will be queued until a gridftp session becomes

available.

Clients to the DRM server include srm-put to put

files into the DRM cache, srm-get to get files out of the

DRM cache, srm-copy to get files from a remote DRM,

and various other clients including srm-ping to check

the status of a server, srm-ls to list a server’s files, and

srm-release to unpin a pinned file.

STAR ANALYSIS METHOD

Method Details

Figure 1 illustrates our general DRM transfer method.

It shows a DRM running both at the job submission site

and at the remote job execution site. Also shown are

worker nodes at the remote site. The worker nodes have a

local disk for input and output files and have access to the

srm-put, srm-get and srm-copy clients. The input

and output files are each transferred in 2 steps. In this

way DRMs can buffer the transfers and network

connections are channelled through the gatekeepers (or

other nodes with appropriate network connectivity). As

will be shown, incoming network connections on the

worker nodes are not needed but an outgoing connection

is used for one of the transfers. This corresponds to a

typical network configuration for most clusters where

outgoing connections from worker nodes are allowed but

incoming connections are blocked. Solutions for clusters

that block outgoing connections from worker nodes are

outside the scope of this paper but could be constructed

with any method that initiates the final transfer from

.

.

.

DRM DRM

 DRM DRM

CACHE CACHE

CLIENT

CLIENT

CLIENT

/scratch

/scratch

/scratch

Submission Site WAN Remote Site

someplace other than the remote worker node, perhaps as

an “border” or “edge” node running the service and

transfer and handled within a DAG.

The first transfer of input files starts when job execution

begins on the remote site worker node. Here srm-copy

is used to transfer input files from the submission site to

DRM cache space on the remote gatekeeper. A logical

file name is assigned by the client for future reference in

the second transfer. Once this transfer is complete a

second transfer uses srm-get to put the input files onto

the local disk of the worker node by referring to the

logical file name assigned in the first transfer. After this

transfer is complete the input files are in place on the

worker node and file processing can begin, releasing the

space in the site DRM cache. Note that for the input files

no external network connections to the worker nodes are

required as files are imported to the local node using a

reference (logical name) to a file previously “pushed” into

DRM space by proxy-ing the file transfer to the SRM

layer in a totally asynchronous manner.

Once the input files have been processed and the output

files written to the worker node disk they are transferred

back to the submission site in a similar two-step transfer.

The first transfer uses srm-put to deposit the output file

into the DRM cache and assign logical file name. The

second transfer uses srm-copy to transfer the output file

from the job execution site back to the job submission

site. Of the four transfers this is the only one in which the

client call goes to a remote DRM over the WAN. This is

necessary because srm-copy works in pull mode and

therefore requires an outgoing connection from the

worker node. Since the call-back from the DRM server

requires an incoming connection to the worker node this

transfer is done without waiting for call-backs. This has

the advantage that the worker node is released back to the

local batch system immediately.

Advantages of the Method

One advantage of this method is that it takes advantage

of standard grid middleware and requires no STAR

specific installations at remote sites. Another advantage

for STAR users is that the look and feel of grid

submission is very similar to local jobs submission that

they are already familiar with – the grid-based parts of the

job such as WAN file transfers are hidden and the same

local files and catalogues are used. Output files are

returned to the submission site just as though the job was

run locally with perhaps the sole caveat to have them

back in a delayed manner. To our experience, this is not a

problem as SRM could be later queried for the status of

an incoming transfer, allowing for accurate reporting of a

job workflow, including the completion status depending

on its output completion status. Making the use of the grid

in STAR as transparent as possible is an important part of

this method as typical users tend to be inclined to use only

as much technology as they need to get their job done. A

final but important benefit of this method is that by using

DRM-managed transfers the load on the gatekeepers can

be controlled. This is accomplished by limiting the

allowed number of concurrent gridftp sessions and if

necessary using a separate node or set of nodes for SRM

file transfers since this method is independent from job

submission. For example, if a user submits 100 jobs to a

remote site and they all start at the same time and try to

transfer files simultaneously the gatekeeper might be

come overloaded. In this method a limited number of

transfers would be allowed and some jobs would wait for

their input files.

TESTING AND PERFORMANCE

The main testbed involves the two main sites for STAR

computing: the tier 0 site at RCF is used for job

submission and the tier 1 site at PDSF/NERSC is used for

job execution. A third, smaller site at Wayne State

University is also used for smaller scale testing.

For large-scale testing, we used production-level STAR

simulation jobs which perform reconstruction of

simulated events. Slightly more complex than a pure

simulation job, these jobs require one input file of about

300 MB which is sourced from HPSS storage by

extending the DRM to be an HRM (Hierarchical

Resource Manager). With a job execution time of 5-10

hours and up to 100 jobs running concurrently we expect

up to 20 jobs to finish per hour. Each job produces a total

of 700 MB in five files so this requires 14 GB/hour

(~4MB/s) on average. For simplicity we’ve been using a

single gridftp session for our WAN transfers which

results in a transfer rate of about 5 MB/s. This rate is

comparable to the net rate we require to minimally sustain

the data transfer so we expect some amount of DRM

management to take place in terms of queuing files during

busy times for later transfer. For the case we studied, the

data transfer being slightly higher than the job IO

throughput allows file transfer to keep up with the data

produced at the remote site. In other words, the

introduction and use of SRM technology in such poor

network transfer conditions is still a good case for

efficiently harvesting remote resources otherwise

unusable or “locked” while waiting for a direct file

transfer. Our later goal of running larger-scale tests and

migrating most production to a Grid based enterprise

would however be severely impacted by the WAN

transfer performance. It is noteworthy to mention that

while this poor performance is not completely

understood, it does not seem to be limited by DRM

(gridftp) as other transfer protocols result in similar

performance.

In our tests we have observed that DRMs working as

designed – i.e., buffering the data transfers and managing

the load on the gatekeepers during times of intense

activity. We have observed latencies of 2 hours without

problems during our testing of this method on a large-

scale basis for about four months. Many thousands of

jobs have been run and many TB’s of data transferred.

DRM stability has been excellent, and the problems we

do observe are typically not DRM-specific and as such

the method also provides a powerful testing tool for

STAR’s grid computing in general.

SUMMARY

The combination of SUMS-based submission of STAR

user analysis jobs combined with file transfers utilizing

SRM technologies enables a seamless, scalable solution

for STAR’s grid computing needs. By working within

the OSG framework we expect that extending the method

to other non-STAR sites will be straightforward. The

SRM/DRM implementation is relatively lightweight

which make it attractive to site administrators particularly

at smaller sites. The method has seen extensive use with

excellent results on the STAR testbed and efforts are

underway to extend the method to other sites.

REFERENCES

[1] The SRM project, http://sdm.lbl.gov/srm-wg/

[2] The STAR Unified Meta-Scheduler

CHEP04, Interlaken, Switzerland

http://indico.cern.ch/contributionDisplay.py?contribI

d=318&sessionId=7&confId=0 ; SUMS

web site resources:

http://www.star.bnl.gov/STAR/comp/Grid/scheduler/

[3] The Condor project: http://www.cs.wisc.edu/condor/

[4] RHIC: http://www.bnl.gov/RHIC/

[5] The xrootd project, http://xrootd.slac.stanford.edu/

[6] The dCache Project, http://www.dcache.org/

