
Using TSM to create a high-performance tape connection

Dr. D. Ressmann, Dr. S. Halstenberg, J. van Wezel
GridKa, Forschungszentrum Karlsruhe, Germany

Abstract

At GridKa an initial capacity of 1.5 PB online and 2 PB
background storage is needed for the LHC start in 2007.
Afterwards the capacity is expected to grow almost expo-
nentially. No computing site will be able to afford keeping
this amount of data in online storage, hence a highly ac-
cessible tape connection is needed. This paper describes
a high-performance connection of the online storage to an
IBM Tivoli Storage Manager (TSM) environment.

The performance of a system does not only depend on
the hardware, but also on the architecture of the applica-
tion. The scenario we are describing distributes its files
over a large number of file servers, storing their data with
the help of a proxy node to tape. Each file server can restore
the data independent on the file server which has stored the
data originally. Furthermore with the LAN free connec-
tion to the tape drives the data transfers bypass the TSM
server which otherwise would be a bottleneck. The system
is completely transparent to the user.

INTRODUCTION

The Grid Computing Centre Karlsruhe [1] (GridKa) is
part of a large science and engineering research institution
”Forschungszentrum Karlsruhe [2]” and serves as a Tier-1
centre for all large hadron collider (LHC) experiments (Al-
ice, Atlas, CMS and LHCb). Furthermore GridKa already
serves four HEP experiments: Babar, CDF, Compass, and
D0. See also [3].

All these experiments produce different types of data
with a different life time and access pattern. To keep files
on disk which are seldom used and have to be stored for
a long time is a very expensive solution, as such storage
is typically divided into online and background storage.
However a fast and reliable access to the background stor-
age is important, since the data flow from the Tier-0 to the
Tier-1 sites have to be guaranteed with a minimum through-
put rate. Additionally at the same time of this data flow
other access pattern have to be supported for reconstruc-
tion and simulation.

As for our planning numbers already in 2006 we provide
800 TB disk and 900 TB tape storage. These numbers in-
crease until 2010 to a disk storage of about 11 PB and a
tape storage of 13 PB. This paper describes a possible so-
lution to connect the online storage with high performance
to the background storage.

SETUP

Service Challenge
The Service Challenges [4] serve to test the infrastruc-

ture needed for full LHC data taking and analysis. It con-
centrates primarily on the robust file transfers from the
Tier-0 centre CERN to all Tier-1 centres which is needed
to support the distribution of the raw data. In subsequent
steps also the transport of the reduced datasets from Tier-
0 to Tier-1, between the Tier-1’s and between the Tier-1’s
and the Tier-2’s will be tested. Apart from the bare data
transport the challenges will take all necessary software
components into account as they become gradually avail-
able. Operational aspects will also need to be understood
as we upgrade in steps from test systems to a production
service. During LHC data taking a 24/7 service has to be
provided and the implications in terms of resources (man-
power) have to be understood. As the tests gradually be-
come more like a service the LHC experiments will use the
production infrastructure for tests of their software and for
their data challenges.

During a throughput phase of these service challenge
tests we transferred more than 200 MB/s from CERN to
GridKa [5] disk to disk. For example during the test on
23rd of January 2006 we used 8 gridFtp doors and 4 pool
nodes. On each of these pool nodes we have installed
two pools with each 1.4 TB disk space. The disks are
mounted over a storage area network (SAN). Since the Ser-
vice Challenge tests include the whole chain of data anal-
ysis, the tape connection is included in these tests. At
Forschungszentrum Karlsruhe we have experience using
TSM as our tape connection.

Tivoli Storage Manager
TSM is a client-server software product developed by

IBM to create and manage backup and archives or im-
portant data. Ideally a TSM server has a disk storage used
for a database containing all information about the location
of a file on tape and the utilisation of a tape. Furthermore a
disk storage can be used as a buffer for the files before they
are written to tape. Additionally the TSM server sends con-
trol messages to a tape robot. The tape robot has a picker
arm which moves the tapes from a shelf into the tape drives.

Traditionally GridKa users created their archives with
the TSM command called ”dsmc”. This method had some
drawbacks since TSM has originally been developed for
backup use, and the archive functionality is somehow awk-
ward. If a user starts an archive for a big directory structure

and several TB of data, this archive will take a long time.
If during this time some complications occur, e.g. the con-
nection to the TSM server is lost, there exist no automa-
tism to check which files have already been archived and
which one haven’t. It would be for the user to check man-
ually every file. Furthermore if the user writes a new file
within a directory structure it will not automatically been
archived. This disadvantages could have been overcome
creating own scripts to access TSM manually or by using
the Hierarchical Storage Management (HSM) functionality
of TSM. However using dCache for this connection, solves
this problem and has many additional advantages.

dCache at GridKa

At GridKa we have decided to use dCache [6] as our
storage element, since it has an exchangeable HSM con-
nection and is accessible via SRM [7]. dCache keeps track
on every file written to tape and schedules the archive auto-
matically till it succeeds by creating a new TSM session for
every file. This whole procedure is completely transparent
for the user. Among other advantages dCache has differ-
ent access modules and gives the opportunity to access the
storage via grid tools like SRM [7].

The files in our dCache system are accessed with dif-
ferent patterns and from different locations. Therefore we
have to partition our dCache setup as shown in figure 1.
Because of security reasons we differentiate between inter-
nal and external pools. The idea is to create the connection
between the internal and external pools only through a tape
medium.

Over a dedicated line, raw data are written from CERN
with a guaranteed high bandwidth to tape at each Tier-1
centre. One of the main purposes of a Tier-1 centre is to
store these raw data and make them available for further
use. Any interruption from user jobs has to be strictly pro-
hibited. Therefore we create write-only pools for these raw
data and do not allow any pool-to-pool transfers or read-
access from these pools. The only purpose of this set of
pools is to write with a constant stream to tape. To access
these files afterwards, they have to be restored from tape to
either an internal or external read pool.

Physicists are reconstructing the raw data and produce
for example Event Summary Data (ESD) using our com-
puting cluster. Newly created files like ESD have to be
stored on a few separate write pools with tape connection.
Lots of user jobs are reading the ESD data in random or-
der and analysing them to create data with a relatively short
lifetime. As such these files are stored on disk-only pools.
Either these disk-only files are not accessed from outside
GridKa, or special security issues have to be considered.
Contrary for the ESD data it is unproblematic to make them
available for other sites e.g. other Tier-1 or Tier-2 sites,
since they are written to tape and the tape library will be
our joint between the internal and external network.

disk−only

disk−only

Tier1,2 sites

raw data

tape
librarytape

library

read−pool

write−pool

DST
ESD...

disk−only

raw data
ESD...
DSTWorkernodes

disk−only

raw data

CERN
dedicated line

intern

extern

DST
ESD...

ESD...
DST

Figure 1: dCache Setup

TAPE CONNECTION

A simple tape connection

One solution for a dCache tape connection using TSM
[8] is to use a TSM server as the connection to the tape
drives as can be seen in figure 2. In this scenario a program
tsmcp which is interfaced to dCache is used. It uses the
TSM application programming interface (API) and starts
and closes a session for each store or retrieve action. The
dCache pool nodes connect to the TSM server, which then
writes the files to tape. This solution does not scale, how-
ever it is perfectly fine for small sites which only need a
tape connection less than 100 MB/s.

Client

TSM Server

dCache
pool

dCache
pool

dCache
pool

Client

Client

Client

Client

dCache
pool

bottleneck!

Tape library

Figure 2: a simple tape connection

To create a scalable and performance solution we intro-
duced storage agents to our setup. A regular TSM server
has a database. Whereby a storage agent is a minimised
TSM-server without its own database. The storage agent
can be installed on a pool node as shown in figure 3, and
as such only a management channel to the TSM-server is
needed via LAN and the data transfer goes directly via
SAN to the tape drives.

Since dCache does its own load balancing, files are
stored from one node and retrieved from another node. It
is possible to use the same TSM client node name for all

dCache pool
storage agent

dCache pool
storage agent

dCache pool
storage agent

Tape library

Client

Client

Client

Client

Client

dCache pool
storage agent

TSM−Server

Figure 3: a possible tape connection using storage agents
and proxy nodes

clients, if the TSM-server writes the files to tape. How-
ever when storage agents are used and the files are all writ-
ten to the same filespace it is important to introduce proxy
nodes. A proxy node is a common name for TSM clients.
For example a client with a node name ”alpha” connects to
its storage agent and requests to write a file on behalf of
”dCache-proxy”. When a node ”beta” tries to read this file
it connects to its own storage agent and requests this file on
behalf of ”dCache-proxy”.

The problem with this approach results in an inordinate
amount of time used for starting a session. Furthermore the
TSM volume selection algorithm starts a cartridge juggle if
a file has to be stored. In case the TSM server writes the file
directly to tape, the same tape is used till it is full without
having to dismount the tape. However when storage agents
are used the same tape is being dismounted frequently as
can be seen in figure 4.

In this example ”pool A” and ”pool B” have each
mounted a tape and start writing to it. Independent if ”pool
A” wants to write a new file to the same tape once the first
session has finished the TSM server decides to schedule
”tape k” for ”pool C”. As a result ”pool C” has to wait till
”pool A” has dismounted that tape and is able to mount it.
If ”pool A” starts a new request while both tapes are still
occupied the TSM server will schedule a new tape from its
stack to be used. In our case it would have been more de-
sirable to use the new tape directly for ”pool C” however
the TSM server tries to optimise the filling of all tapes and
as such does not use a new tape for each request as long
as it has a tape with some space left. In addition a retrieve
action has no way to manage the ordering of the files.

AN IMPROVED PERFORMANCE TAPE
SOLUTION

We developed a TSM Session Server (TSS), which cre-
ates a connection between the dCache pools and the storage
agents using also the TSM API. The TSS is a single exe-

Pool A Pool B Pool C drive g drive hServer
TSM

drive f

tape m mounted

mount tape o

write file
write file

write file

mount tape k
write file

request mount

take tape k

request mount

take tape o

tape k mounted

umount tape k

choose
tape

tape
wait for

tape
choose

Figure 4: the drawback with storage agents

cutable and opens a TSM session, which is kept alive till a
timeout without any request occurs. The advantage of this
approach is, that TSM interacts only with a single session
and dCache can handle multiple tape flush, retrieval, re-
name, or queries on log files within the same session. The
TSS returns the appropriate return code for each request.
As such dCache still keeps the control, which files are on
tape and which files did not succeed. Furthermore the TSS
sends different types of data to different tape sets, if this in-
formation are known from dCache it might also group data
which are likely to be retrieved together. Figure 5 demon-
strates the same example as explained in figure 4, but using
the TSS. It can clearly be seen that the mount action of a
storage agent is extremely decreased.

Pool A Pool B Pool C drive g drive hServer
TSM

drive f

tape m mounted
write file

write file

write file

request mount

take tape o

tape k mounted

choose
tape

mount tape o
write file write file

Figure 5: the improved solution using TSS

CONCLUSION

The throughput of a TSM server is limited by the capac-
ity of the machine and this is in our case 100 MB/s. Assum-
ing that one LTO2 drive can write with a maximum speed
of 35 MB/s to a tape the TSM server would have to be able
to write with a speed of 105 MB/s with only 3 drives con-
nected. Adding additional drives would not create a higher
troughput and as such the TSM server is identified as a bot-
tleneck. This initial solution does not scale.

Presuming a storage agent is able to write with the same
speed as the TSM server that is 100 MB/s to tape we
have a similar problem since adding more storage agents
will increase the number of mount actions and as such the
throughput is reduced with the number of storage agents
used.

While using the TSM Session Server the unnecessary
mount actions are reduced and the throughput increases
with the number of storage agents. As a result we have cre-
ated a high-performance and scalable tape connection us-
ing TSM. Furthermore the TSS keeps the drives streaming
at its maximum rate and creates a clear cut between online
and background storage operations. The disk pool manage-
ment system we use at the moment is dCache, however TSS
can be used for other disk pool mangers with little adapta-
tion. The reading operations can be advanced when the
disk pool management supports a sort algorithm for these
request. This is already announced for dCache. With the
current rate of file transactions and the estimated number
of files in the future, the TSM database is not expected to
become a bottleneck.

ACKNOWLEDGEMENTS
The authors wish to thank people of the department GIS

and DASI from IWR at Forschungszentrum Karlsruhe and
the German Federal Ministry of Education and Research
(BMBF) for their support at various stages in the prepara-
tion of the work presented.

REFERENCES
[1] Grid Computing Centre Karlsruhe

http://www.gridka.de

[2] Forschungszentrum Karlsruhe GmbH
http://www.fzk.de

[3] Connecting WLCG Tier-2 Centres to GridKa
A. Heiss, S. Halstenberg, B. Hoeft, D. Ressmann, J. van
Wezel
CHEP 06 Proceedings

[4] Service Challenge
https://uimon.cern.ch/twiki/bin/view/LCG/LCGServiceChallenges

[5] Service Challenge Monitoring
http://lxgate24.cern.ch/GRIDVIEW/

[6] dCache
http://www.dcache.org

[7] Storage Resource Manager
http://www-isd.fnal.gov/srm/

[8] Tivoli Storage Manager
http://publib.boulder.ibm.com/infocenter/tivihelp/v1r1/index.jsp

