GRID DATA MANAGEMENT:
RELIABLE FILE TRANSFER SERVICES PERFORMACE

G.A. Stewart, University of Glasgow, Glasgow, UK
G. McCance, CERN, Geneva, Switzerland

Abstract

Data management has proved to be one of the hardest
jobs to do in a the grid environment. In particular, file repli-
cation has suffered problems of transport failures, client
disconnections, duplication of current transfers and resul-
tant server saturation.

To address these problems the globus and gL ite grid mid-
dlewares offer new services which improve the resiliency
and robustness of file replication on the grid. gL.ite has the
File Transfer Service (FTS) and Globus offers Reliable File
Transfer (RFT). Both of these middleware components of-
fer clients a web service interface to which they can submit
a request to copy a file from one grid storage element to
another. Clients can then return to the web service to query
the status of their requested transfer, while the services can
schedule, load balance and retry failures between the re-
ceived requests.

In this paper we compare these two services, examining,

1. Architecture and features offered to clients and grid
infrastructure providers.

2. Robustness under load: e.g., when large numbers of
clients attempt to connect in a short time or large num-
bers of transfers are scheduled at once.

3. Behaviour under common failure conditions - loss
of network connectivity, failure of backend database,
sudden client disconnections.

Lessons learned in the deployment of gLite FTS during
LCG Service Challenge 3 are also discussed.

Finally, further development of higher level data man-
agement services, including interaction with catalogs in
gLite File Placement Service and Globus Data Replication
Service is considered.

INTRODUCTION

Initial efforts to manage data on the grid concentrated
primarily on data movement protocols. These protocols,
such as gridftp[7] and http+modgridsite[5], are low
level protocols focused on actually shifting data between
machines in a grid environment.

However, even though these data transport protocols
have evolved and are now quite robust, there is a problem
when a user’s client computer itself initiates the transfer.
When this happens the client itself holds important infor-
mation about the state of the transfer. This means that the
client cannot disconnect from the network — which may be

inconvenient for the user — and that if it does the transfer
fails[1].

More importantly though, when data transfers are initi-
ated at the client level, there is no notion of the global state
of data transfers between two sites. This can lead problems
for sites[2] and clients[3]:

e Storage elements can be overwhelmed with transfer
requests.

e Clients can attempt to replicate the same file simulta-
neously onto the same storage element.

o Sites have little control over the use of their network
resources.

To address these problems there is a clear need for a data
transfer service, shown in Figure 1. Such a service should
provide clients with a stateless interface, so which they can
connect to submit a transfers, monitor status or cancel a
transfer request. It should also store the state of transfers
robustly, allowing for breaks in connectivity and restarts of
the service. Finally, it should offer some ability for sites to
manage data flow in and out of their storage.

+Submit new request

*Monitor progress
/ sCancel request

Client

\

~ « SOAP via https

—

Data
Filow

Figure 1: Architecture of a transfer service.

SERVICE ARCHITECTURE

Globus RFT

The Globus Reliable File Transfer[9] (RFT) service
presents a stateless web service to clients, which can run

in either a tomcat5 container or inside the globus WS con-
tainer. Underlying the stateless web service, RFT stores
transfer status in a database (currently PostgreSQL or
MySQL), ensuring robustness and service continuity.

A few parameters are controlled at the RFT instance
level. Of particular importance is the maximum number
of concurrent transfers which will be attempted. Unfortu-
nately this feature is currently not working, so no global
concurrency limit can be set in RFT at the moment.

To submit a transfer request to RFT, clients use
SOAP over https, giving a list of source and destination
gsiftp:// URLs. Certain transfer parameters (gridftp
streams, concurrency, tcp buffer sizes) can be specified, as
well as a maximum lifetime for the transfer. Jobs consisting
of recursive copies can be submitted. An “all or nothing”
flag can be set, which indicates whether partial success of
a transfer is acceptable (if not, files which did transfer suc-
cessfully will be deleted).

Clients can query the transfer state later (polling) or reg-
ister for status updates with the RFT service.

It is possible to submit mass deletion jobs to RFT.

RFT is currently capable of transferring between storage
elements offering gridftp interfaces. No integration with
Storage Resource Manager[8] interfaces on SEs is avail-
able.

gLite FTS

The gLite File Transfer Service[6] (FTS), like the RFT,
presents a web service interface (running in a tomcat5
container) to its clients. The web service interface stores
transfer state in a backend database (currently Oracle and
MySQL are supported), which acts as a the single point of
persistence for the service.

When clients submit file transfer requests they submit
a list of source URLs (SURLs).and destination SURLSs,
expressed as srm:// URLs. Other parameters, such as
gridftp options, can also be given.

Once a transfer has been submitted clients may poll for
its status or cancel a request.

FTS can presently transfer files between grid storage el-
ements offering an SRM interface. It is intended that stor-
age elements with only gridftp interfaces will also be sup-
ported, but currently the parsing of gsiftp:// URLSs is
broken.

FTS has two other important architectural concepts:
channels and agents, together with a supporting authori-
sation infrastructure for different roles[4].

Channels Channels are an abstract FTS concept,
which map from the storage elements of one site to that
of another (N.B., channels are unidirectional). Each chan-
nel can be managed independently of all others (stopped,
started, drained, etc.) and can have specific transfer param-
eters set for it, e.g., number of concurrent transfers. The
“share” of a channel given to a specific VO can also be set,
allowing priorities to be shifted between VOs.

Clearly a channel between dedicated sites will usually
map to a specific production network pipe in HEP. Chan-
nels can however take a wildcard, x, meaning “any site”,
and channels can be configured as “x to mysite” or even
“x to «” providing a final default channel.

FTS Agents FTS agents are daemons responsible for
managing certain parts of the management of transfer re-
quests.

FTS supports two types of agents, channel agents and
VO agents. The VO agent is responsible for managing re-
quests for a particular VO. At its most basic this consists
of authorising a transfer request and then assigning it to an
FTS channel.

However, hooks exist allowing VO agents to interact
with catalogs, assign transfer priorities or perform any
other VO specific tasks.

Once jobs have been assigned to a channel, the channel
agent will start and monitor the transfers (applying a retry
policy if necessary). The channel agent also balances re-
quests on a channel between different VVOs.

It should be noted that channel and VO agents can run
on different machines from the FTS web service.

ROBUSTNESSTESTS

Hardware

For the purposes of robustness testing both services were
setup on the same type of hardware, a single processor
2.80GHz P4 machines with 512MB of memory and a sin-
gle IDE disk. The operating system was Scientific Linux
305. The servers were both setup to use MySQL backend
databases (v 4.1.11) co-hosted with the transfer service.

Service Restart

Robust file transfer services should be able to cope with
being restarted and carry on transfers from the last check-
pointed state.

Both services were initialised with set of transfers, then
shutdown. The behaviour of the services was examined and
is summarised in Table 1.

Table 1: Robustness tests over service restart

Test FTS | RFT
New transfer PASS PASS
Incomplete transfer PASS FAIL
Pending transfer PASS | UNTESTABLE
New transfer after restart | PASS PASS

Unfortunately, because of the global concurrency bug in
RFT a test of the behaviour of a pending transfer was un-
able to be done.

After restart RFT failed to restart incomplete transfers.

Database Connection Loss

A test of the statelessness and robustness of transfer ser-
vices can be examined by simulating loss of connectivity
with the underlying database. The was achieved by using
iptables to break the TCP connection from the service to
the database.

As before, the services were seeded with set of transfers,
then the connection to the database was broken. After a
time the iptables rule was removed, to allow the service
to reconnect to the database. The behaviour of the services
was examined and is summarised in Table 2.

Table 2: Robustness tests over database loss

Test | FTS | RFT
New transfer PASS PASS
Incomplete transfer PASS FAIL
Pending transfer PASS | UNTESTABLE
New transfer after reconnect | PASS FAIL

As before, the global concurrency bug in RFT meant a
test of pending transfers was unable to be done.

RFT was observed not to reconnect to the database,
which meant it failed to restart incomplete transfers or ac-
cept new transfers. The RFT service had to be restarted in
order for it to function again.

Mass Client Submission

To test the performance of FTS and RFT under load a
mass client submission was tested. This was achieved by
writing a small python harness to prepare and fork a large
number of clients at the same time.

gLite FTS A number of gLite FTS command line
clients (glite-transfer-submit) were invoked on a
testing host simultaneously, each submitting a single
100MB file transfer request. As the FTS clients are written
in C, and thus lightweight, only a single testing client was
needed to be able to overload the FTS server. The fraction
of clients which failed in their submission, and the time
taken for all clients to exit (successfully or not) is plotted
in Figure 2.

As can be seen, on the low end hardware used for FTS
simultaneous submission up to 50 clients is possible. It
should be noted that all the failures were clean and the FTS
server itself did not crash. (Although the error messages
reported by FTS clients are not for the faint hearted.)

FTS is limited in accepting connections by the tomcat
server being unable to fork threads fast enough to deal with
the connection.

Globus RFT The Globus RFT client supplied with
GT4.0.1 is java based. As with most java tools running
against the Sun JVM it suffers from long startup time and

4 120

0.8 Sumbission Time —f—
Failure Rate
—~

100

06 |- k f :

4 60

04 f’
4 40
02|

Failure Fraction
Submission Time (s,

,,,,,,,,,,,,J'_W,,,
N

0 10 20 30) 40 50 60 70 80
Clients

Figure 2: FTS with mass client submission.

occupies a great deal of system resources. This made test-
ing the Globus RFT difficult as it was hard to invoke a suf-
ficient number of clients simultaneously, indeed on a single
client host with 1GB of memory it was only possible to in-
voke about 10 clients.

However, by parallelising requests across a humber of
clients we could test up to 80 clients, but the JVM startup
meant that even though these were invoked at the same
time, they were considerably spread in time once they tried
to contact the RFT service (over periods of up to 30s).

This made the RFT test quite different from the FTS
one, where it was easy to overload the service with the
lightweight C client, consequently the number of failures
with RFT was always low (Figure 3).

@
<}
IS}

700
08 [Completion Time —}—

Failure Rate 600
Transient Failure Rate }K D
-
g 500 2
T os £
@ =
iy c
- w00 5
@ =
S ; K&
1 04 ; o8

‘S / 300
w ’ €

_F 200

02 + B £
s KoK 100
o e L . . " . o
0 /1’6 20 30 .40 50 60 70 80
Clients

Figure 3: RFT with mass client submission.

However, when making large submissions, due to the
concurrency bug in RFT, transient gridftp errors are com-
mon as the gridftp server used becomes overloaded (when
60 clients submit a minimum of 60 gridftp sessions are
started), which is also seen clearly in (Figure 3).

Because the RFT client subscribes for status updates and
only exits when the transfer has completed the time shown
cannot be compared to that in Figure 2.

Additional Observations

No systematic attempt to measure the robustness of ser-
vices over a long period. However, the following was ob-
served:

e Globus RFT failed several times after 24 hours and
required a service restart.

e Onone occasion FTS suffered a channel agent failure,
requiring the agent to be restarted.

In addition a bug was found in FTS which make it impos-
sible to cancel transfers when the MySQL database back-
end was used.

CATALOG INTERACTION

Transfer services offering point to point data movement
provide an important function to the grid. However, these
are still quite low level services. In the grid paradigm a user
may not know nor care where their data is. The location of
their data will be held in a file catalog, which should be
updated when new replicas of files are made.

This is achieved in different ways for FTS and RFT.

gLite FTS

For FTS a VO agent can take care of resolving file cata-
log entries to SURLSs. After transfers have been completed
new replicas are registered in the file catalog.

This added functionality turns the FTS into the gL.ite File
Placement Service (FPS).

Globus RFT

For the RFT the whole service is wrapped in a higher
level web service, the Data Replication Service (DRS).
This interacts with the Globus Replica Location Service
(RLS) catalog in much the same way as the FPS does.

FTSAND LCG SERVICE CHALLENGES

gLite FTS has been used extensively during the LCG ser-
vice challenges, involving the transfer of hundreds of TB
of data from CERN to various LCG Tier 1 sites, as seen in
Figure 4.

Daily fiveraged Throughput From 17/01 to 24/01
From CERNCI to ALL SITES

B oasic @B
=
(==
B ey o ook
O oTHERsE PIC
=] =
B TRILE

Dates GRIDVIEW, Pousred by R-GHA
S e

Figure 4: Data transfer rates during SC3 rerun — transfers
are managed by FTS.

These tests, sustained over many days, have greatly
helped improve the robustness of FTS in a production en-
vironment.

CONCLUSIONS

gLite FTS and Globus RFT both offer reliable and robust
management of data movement in a grid environment, and
represent a significant advance over direct client manage-
ment of data transfers.

The channel architecture of FTS offers a sophisticated
infrastructure for controlling data movement in a grid en-
vironment, particularly one with well defined data flows,
such as LCG. Where such structured data flows do not ex-
ist the deployment of FTS channels may be less clear, but
could still be useful.

This gives FTS a powerful ability to control transfers on
a channel basis. For RFT concurrency can only be con-
trolled at the global container level.

Neither service was wholly stable or bug free, however
FTS had significantly less problems than RFT — probably
as a consequence of stress testing during LCG service chal-
lenge 4. Error messages returned to clients need improve-
ment and clients themselves could be made more robust.

RFT offers some useful features to clients not currently
available in FTS, such as global deletions and a subscrip-
tion service for updates.

Integration with data catalogs is at an early stage for both
services, but will be the next important step in providing
robust, transparent data movement services on the grid.

REFERENCES

[1] Allcock, William E., lan Foster and Ravi Madduri Re-
liable Data Transport: A Critical Service for the Grid,
http://www.globus.org/alliance/publications/papers/
GGF11_RFTV-Fina.pdf.

[2] Baud, Jean-Philippe and James Casey Evolution of LCG-
2 Data Management, CHEP 04 Proceedings, Interlaken,
Switzerland 2004.

[3] Burke, Stephen et al. HEP Applications Experience With The
European Datagrid Middleware And Testbed, CHEP 04 Pro-
ceedings, Interlaken, Switzerland 2004.

[4] Kunst, Peter, Paulo Bandino, Gavin McCance, Ricardo Brito
da Rocha The gLite File Transfer Service: Middleware
Lessons Learned from the Service Challenges, CHEP 06 Pro-
ceedings, Mumbai, India 2006.

[5] McNab, Andrew Web servers for bulk file transfer and stor-
age, CHEP 06 Proceedings, Mumbai, India 2006.

[6] http://egee-jral-dm.web.cern.ch/egee-jral-dm/FTS/
[7] https://forge.gridforum.org/projects/gridftp-wg

[8] http://sdm.Ibl.gov/srm-wg/

[9] http://lwww.globus.org/toolkit/docs/4.0/data/rft/

