
THE ZEUS GRID-TOOLKIT – AN EXPERIMENT INDEPENDENT LAYER
TO ACCESS GRID SERVICES

K. Wrona, H. Stadie, M. Ernst, R. Mankel, DESY, Hamburg, Germany

J. Ferrando, University of Glasgow, Glasgow, United Kingdom

Abstract

The HERA luminosity upgrade and enhancements of

the detector have led to considerably increased demands
on computing resources for the ZEUS experiment. In
order to meet these higher requirements, the ZEUS
computing model has been extended to support
computations in the Grid environment. We show how to
use the Grid services in the production system of a real
experiment and point out the main issues, which must be
addressed in order to use the Grid resources routinely and
efficiently. We present the ZEUS Grid-toolkit designed as
an additional layer between the Grid and experiment
specific software. It provides a general interface for job
management and data handling, which makes our
application software independent of the actual Grid
middleware software version. Different Grid middleware
implementations as LCG/EGEE [1] or Grid3/OSG [2]
may be used simultaneously and smooth migration is
possible as new middleware implementations appear
(e.g. gLite [3]). The job efficiency is significantly
improved by introducing fault tolerant methods. The
toolkit provides extensible Perl [4] classes for job
management and implements additional features like
dynamic creation of job description, automatic job
resubmission and validation of the job results. The toolkit
has been successfully used in the integrated ZEUS Monte
Carlo production system for more than a year.

INTRODUCTION
The ZEUS experiment at HERA collider is one of the

first currently data-taking projects, which successfully
deployed a Grid-based Monte Carlo simulation suite at
the mass production scale. The system has been routinely
used in the daily physics analysis for more than a year.

After the luminosity upgrade of HERA accelerator and
enhancements of the ZEUS detector, the demands for
Monte Carlo production have increased considerably.
ZEUS experiment had already been using a distributed
MC production system since early 90’s. The system had
used dedicated farms spread all over the world. Further
extension was possible only through the emerging Grid
infrastructure. Extending the ZEUS computation model to
support simulation in the Grid environment became
indispensable in order to meet higher requirements.

Efficient usage of available Grid resources was an
important issue right from the beginning. Therefore a
careful design was mandatory. Legacy software used in
the standard system provided the basis for the integrated

Monte Carlo production system, but the Grid services had
to be interfaced in the transparent way.

THE ZEUS GRID-TOOLKIT
Motivation

The grid services and tools delivered to the users
through different Grid technologies are still not fully
mature. Different Grid middleware flavours provide client
tools with different interfaces. Furthermore, the software
is under heavy development and interfaces keep changing
between releases. Various services are being re-
implemented, which frequently leads to the enforced
modifications of the users software. Many features useful
for the job and data management are still missing or the
existing implementation is not satisfactory. For example,
there are no tools to manage users’ jobs on a large scale.
On the other side, over the time many services get
gradually improved and therefore it is important that the
users benefit from them as soon as they come available.
In order to improve the management of the project-
specific software and allow for quick adaptation to the
frequent modifications related to the Grid services, the
ZEUS Grid-Toolkit has been developed.

General concept
 The ZEUS Grid-Toolkit is a software layer (Figure 1),

which provides an abstract interface to the project specific
software. It encapsulates all details related to the
particular Grid middleware implementation. Object-
oriented design techniques have been employed in order
to make the toolkit maintainable over a longer time scale.
Different Grid technologies may be used simultaneously
and migrations become straightforward.

Job
management

utilities

Data
management

utilities
Job wrapper

ZEUS Grid Toolkit

LCG/EGEE Grid3/OSG (gLite/EGEE) …

Figure 1: The layout of the ZEUS Grid-Toolkit

IImmpplleemmeennttaattiioonnIInntteerrffaaccee

Grid::JobCommandEDG

Grid::JobSubmitter

Grid::Jdl

Grid::JobCommand

Grid::JobCommandFactory

Grid::JobCommandGlobus

Grid::another impl Grid::JobInfo

Grid::Job

Toolkit functionality
The ZEUS Grid-Toolkit provides a set of Perl classes

(modules) for the job management on the User Interface.
In contrary to the LCG client tools it is possible to store
on the client host not only the job identification string, but
the whole set of parameters related to the Grid job. After
the job is submitted to the Grid, the corresponding object
of the Grid::Job class is serialized and can be stored in a
local database for further usage. The toolkit classes
provide methods to submit jobs, query their status,
retrieve the output, validate the results of the jobs and if
necessary resubmit the job again. In addition the project
specific information can be easily added to the job object,
by extending the class through the inheritance.

Another set of classes supports the data management
utilities. Tools built on top of these classes handle the
registration of files in the catalog, transfer of the files
between different sites and validation of the transferred
files. In case of failure, the operation may be repeated a
configurable number of times until it succeed.

A timeout can be enforced for execution of any external
program. This proved to be very useful, in particular
while running batch jobs where the user does not have
direct control on the execution environment. The logging
facility and the verification framework for the job results
significantly improve the error detection and recovery
from failures.

The toolkit contains also a set of general-purpose
classes, which help developers to write maintainable
code. This includes basic structure classes like Array,
Hash, Iterator as well as the command line parser utilities,
classes handling the configuration parameters or
providing persistency for the objects.

In the following the design of the most important
classes is explained.

DESING AND IMPLEMENTATION OF
THE TOOLKIT

Job management classes
In Figure 2 a simplified UML class diagram for the job

management classes is shown. By using the “Strategy
pattern” the interface is clearly separated from the
implementation classes. The abstract class
Grid::JobCommand declares methods, which must be
defined by concrete implementation classes. These
implementation classes are mostly wrappers around the
client tools provided by particular Grid middleware. At
the moment, two implementations are supported. One
uses tools delivered by LCG/EGEE middleware while the
second one uses the Globus [5] toolkit. Whenever new
and more attractive implementations appear the software
may be easily adjusted to use its methods. For example,
the gLite middleware would be a natural candidate.

The user script does not need to deal with these
different approaches, because the code uses only the

interface classes. In all cases the job is defined through
the Grid::Jdl class interface. Upon the job submission to
the LCG site, the description of the job is converted to a
JDL file, while in case of Grid3/OSG site the globus
submission tool is run with proper options.

The Grid::Jdl class provides also methods, which
restrict the job submission to those sites which properly
handle the user requests. For example, a site with
temporary problems may accept Grid jobs, but never
submit them to its local batch system. The user can supply
a file with the “white list” of acceptable Computing
Elements.

The Grid::JobCommandFactory ensures that the proper
implementation is used when new jobs are submitted. The
decision is based on the availability of installed packages
and the user configuration file:
 DefaultImplementation LCG
 DefaultTimeOut 180
 GlobusStorageArea dcache.desy.de/pnfs/zeusmc/spool
Once the user submits the job using the
Grid::JobSubmitter class, the corresponding job object is
created. The run-time object may be serialized and stored
in a database. The persistency feature is provided by the
ZEUS::Storable class. The object can be retrieved from
the database and instantiated at any later time.
The Grid::Job class may be also enriched through the
class’ inheritance. New methods can be defined according
to the needs of the project. The toolkit contains an
example of the code, which shows how to display a
history of the job, validate the job output and re-submit
failed jobs.

Data management classes
One of the most important tasks users have to handle

when running jobs on the Grid is the management of data.
This task involves many Grid services like catalogs, space
management, replication of data sets, and data transfer.
Existing implementations of these services however, are
not yet on a satisfactory level and very often simple
operations fail due to temporary problems.

Figure 2: Simplified UML class diagram for job
management classes

The ZEUS Grid-Toolkit strives to overcome these
failures by implementing appropriate recovery
procedures. In case recovery is impossible, the user is
informed. The most undesirable effect users have to
experience is the lack of any response from a Grid
service. Unfortunately, this may still happen frequently.
Therefore, the toolkit implements configurable timeout
enforcement for all data-related operations. Depending on
the task, the user can choose an appropriate timeout value,
and in addition the operation can be retried several times
before it is regarded to be unsuccessful. Below an
example of a configuration file is shown:
VO ZEUS
DefaultImplementation LCG
DefaultSE srm-dcache.desy.de
CatalogImplementation LFC
CatalogHost grid-cat2.desy.de
DefaultTimeout 1200
DefaultMaxTries 3
DESY_DE_MaxTries 2

Apart from the earlier mentioned timeout and retry

configuration parameters, the list also contains
parameters, which have to be delivered as options to most
of the tools. Examples are the virtual organization name,
the catalog host or the storage element.

The data management classes (Figure 3) are organized
in a way similar to the classes handling users’ jobs. The
interface is provided by one class, LfnHandle, while all
details are hidden from the user in the set of
implementation classes. There are two internal
independent implementations: one for the catalog
operations and the second for the data transfer. The
catalog is used to provide a global namespace for
registered files. The class handles registration of files.
Apart from the logical file name, additional parameters

are stored in the catalog. These are: owner of the file, file
size, time of creation and a control sum calculated over
the content of the file. These parameters are calculated
during the registration step and then are used to check the
consistency of the file, for example after the replication to
another storage element. Both EDG and LFC catalogs are
currently supported. User can choose which one should be
used by setting the configuration parameter.

The transfer of files between different hosts on the Grid
is implemented using the tools delivered by the LCG
middleware. At an earlier stage, the edg-rm command line
tool was encapsulated in the implementation class. Later
on, the new set of commands became available. These
new commands were wrapped into the second
implementation class. This approach allowed us to use
both command sets simultaneously during the migration
phase.

Other toolkit classes
The toolkit contains also classes for more general

purposes. These include code for flexible logging utilities,
command line parsing, execution of external programs,
filesystem operations, time manipulation, and basic
structures like Array, Hash, or Vector.

For example the class ZEUS::ShellEnvSystem provides
a method to call any program from the Perl script. This
class has a built-in mechanism, which enforces a
configurable timeout if user needs it. It is also
implemented in a way that both standard output and
return code are accessible, which is not provided by the
standard Perl modules. Other classes like ZEUS::Storable,
which provides a persistency mechanism for Perl objects,
or command line parser, are just wrappers around the
standard Perl modules. These wrappers are mainly useful
for developers who want to keep their code clear and
easily maintainable.

Figure 3: UML class diagram for data management

THE MONTE CARLO PRODUCTION
SYSTEM

The ZEUS Grid-Toolkit has been used for the first time
in the Integrated Monte Carlo Production System for
ZEUS experiment. The original distributed system was
extended to support computation in the Grid environment.
Detailed description of the system is given in the [6]. In
Figure 4 the architecture of the system is shown.

An original user request submitted to the Integrated MC
Production System may be run on the classical farms or
on the Grid. The requests assigned to the Grid are sent to
the User Interface (UI) host, which acts as a gateway to
the Grid. Each request is divided into a number of
independent tasks. These tasks are dynamically translated
into the Grid jobs using the Grid::Jdl class. The jobs are
then submitted to the Grid, and Perl objects representing
these jobs are serialized and stored in the MySQL [7]
database. The Grid::Job class is extended through the
inheritance mechanism. Additional parameters strictly
related to the MC request are kept in the objects. Also the
full Grid::Jdl object is stored in Grid::Job, which allows
the system automatically resubmit failed job. In the
production system, both LCG/EGEE and Grid3/OSG
middleware flavours are used. Job objects can be accessed
from the database and de-serialized to the fully functional
runtime objects. The object-oriented approach ensures
that the methods, which are used to query the job status or
retrieve the output, use the proper implementation classes.
By using a common interface, the Gateway software
which is by itself complex does not have to know
anything about the tools delivered by a particular
middleware. This separation turned out to be highly
beneficial. Any changes triggered by the development of
Grid software are thus localized and restricted to the
ZEUS Grid-Toolkit. Migration can be done very fast
between subsequent releases.
 Monitoring of the jobs is crucial for a mass production
system. The objects stored in the database serve as a
primary source of information about the status of the
production. The full history of a submitted task can be
inspected using the command line and web interface
(Figure 5).

SUMMARY
The ZEUS Grid-Toolkit has been designed and

developed in order to efficiently use the existing client
tools for accessing Grid services. Careful object-oriented
design has led to the solution, which separates the project
specific code and the Grid tools delivered by concrete
middleware implementation or its subsequent version.
The differences between Grid middleware flavours are
encapsulated in the implementation classes while the
interface is independent from it. The toolkit fixes known
deficiencies of contemporary Grid software and extends
its functionality. Simultaneous usage of several Grid
technologies is possible. Due to the usage of the presented
toolkit, we have been able to increase the efficiency of the
ZEUS Monte Carlo jobs significantly.

ACKNOWLEDGMENTS
The authors of this article would like to thank all Grid

sites representatives who support the ZEUS VO and allow
us using their computing resources, Grid farms
administrators for the cooperation in solving technical
issues.

REFERENCES
[1] LCG: http://lcg.web.cern.ch/LCG/
[2] Open Science Grid: http://www.opensciencegrid.org/
[3] gLite: http://glite.web.cern.ch/glite/
[4] Perl: http://www.perl.com/
[5] I. Foster, C. Kasselmann “Globus: A Metacomputing

Infrastructure Toolkit“ Intl. J. Supercomputer
Applications 11(2) (1997) 115-128

[6] H.Stadie at al., “Long-term Experience with Grid-
based Monte Carlo Mass Production for the ZEUS
Experiment”

[7] MySQL: http://www.mysql.com/

Figure 4: ZEUS MC production system

Figure 5: Job monitoring tools

