CORAL, A SOFTWARE SYSTEM FOR VENDOR-NEUTRAL ACCESS TO
RELATIONAL DATABASES

I. Papadopoulos, R. Chytracek, D. Diillmann, G. Govi, IT Department, CERN, Geneva, Switzerland
Y. Shapiro, ATLAS Database Group, PH Department, CERN, Geneva, Switzerland
Z. Xie, Princeton University, Princeton, New Jersey 08544 USA

Abstract

The COmmon Relational Abstraction Layer
(CORAL)[1] is a C++ software system,developed within
the context of the LCG persistency framework, which
provides vendor-neutral software access to relational
databases with defined semantics. The SQL-free public in-
terfaces ensure the encapsulation of all the differences that
one may find among the various RDBMS flavours in terms
of SQL syntax and data types. CORAL has been developed
following a component architecture where the various
RDBMS-specific implementations of the interfaces are
loaded as plugin libraries at run-time whenever required.
The system addresses the needs related to the distributed
deployment of relational data by providing hooks for
client-side monitoring, database service indirection and
application-level connection pooling.

INTRODUCTION

CORAL is the set of software deliverables of the
“Database Access and Distribution” work package of the
POOL project[2]. The development of libraries for the
vendor-independent database access, collectively referred
to as the Relational Abstraction Layer (RAL), started
within POOL in spring 2004. At that time the main require-
ment that needed to be met was the creation of an insulation
layer that would allow the development of software com-
ponents responsible for accessing data in RDBMS with-
out the knowledge of the subtle differences among the
various technology-specific solutions. Since then RAL
was adopted by the relational components of POOL (File
Catalog, Collections), the COOL (Conditions Database)
project[3], and several components of the software frame-
works of the LHC experiments.

In spring 2005 a formal review took place of the existing
RAL API with feedback from the direct clients of RAL,
within and outside POOL. During the review new emerg-
ing use cases have been considered that are related to the
database deployment and distrubution issues. The outcome
was the design of an improved version of RAL, which is
now being developed and packaged independently of the
rest of the POOL components under the new name CORAL
(COmmon Relational Abstraction Layer).

PROJECT SCOPE

The primary goal of CORAL is to provide function-
ality for accessing data in relational databases using a
C++ AP, free of SQL commands and types, shielding the

user from the technology-specific APIs. The need for the
maximal SQL insulation from the client software can be
demonstrated simply showing the SQL statements for two
technologies (Oracle[5] and MySQL[6]), which are used
mostly in HEP, in rather simple tasks:

1. Creation of a table:

e MySQL syntax:
CREATE TABLE Tt
(I BIGINT, X DOUBLE)

e Oracle syntax:
CREATE TABLE "T_t"
(I NUMBER(20), X BINARY_DOUBLE)

2. Query fetching only the first rows of the result set:

e MySQL syntax:
SELECT X FROM Tt
ORDER BY | LIMIT 5

e Oracle syntax:
SELECT * FROM
(SELECT X FROM "T_t" ORDER BY 1)
WHERE ROWNUM < 6

The CORAL approach is to present an identical API for
such cases, which allows the development of software com-
ponents that can be used without any code modification or
conditional constructs against multiple relational technolo-
gies.

CORAL is expected to be used by applications run-
ning on a grid-enabled and distributed environment. It
is therefore defining the necessary interfaces for database
service indirection, multiple authentication mechanisms
(certificate- and user/password pair-based), client-side con-
nection pooling and client-side monitoring.

CORAL is not a general purpose C++ connectivity li-
brary, such as ODBC, JDBC, the python or perl DBI. It is
neither a system to accomodate all access patterns to rela-
tional data. Its scope is restricted to serve primarily the use
cases relevant to the data handling and analysis of the LHC
experiments.

ARCHITECTURAL CHOICES

The architecture of CORAL is component-based. The
overall system consists of a set of abstract interfaces and
several implementation components which have no depen-
dency on each other. Data and control flow only through
the abstract interfaces in a user application.

EnvironmentAuthenticationService
XMLAuthenticationService

XMLLookupService
LFCLookupService

MonitoringService

ConnectionService

RelationalService

‘ Developer—Level Interfaces and Common Implementations ‘

(CoralCommon)

i

User—Level Interfaces (RDBMS Access, Types, Row Buffers, etc.) ‘

(Relational Access, CoralBase)

Figure 1: Component architecture of the CORAL framework.

The technology insulation is achieved through the set of
the abstract interfaces; a client component depends only on
them. The functionality expressed by each interface is min-
imal but complete. The component architecture and the fact
that the functionality expressed by each interface is mini-
mal but complete, enable the parallel and independent de-
velopment of the various CORAL components, as well as
additional and user-provided implementations of the same
interfaces. They also facilitate efficient unit and integration
testing.

The static view of the CORAL architecture is shown in
Fig. 1. The realization of the component architecture has
been based on the plugin management and the component
framework of the SEAL[4] project. The latter allows the
construction of context hierarchies onto which the various
implementation components are hooked. In this configura-
tion if a component requires the functionality of a particular
interface, it simply queries its context tree for an available
implementation.

FUNCTIONALITY OF THE PUBLIC API

A user may connect to a database schema by prividing a
contact string with the following format:
technology_protocol://hostname:port_number/schema_name
The technology may take values such as oracle, mysql,
sqlite, etc. The protocol is optional and used only on em-
bedded technologies such as SQLite[7]. It may take values
such as file, http, etc.

The loaded implementation of the IRelationalService in-
terface parses the connection string and searches for avail-
able plugins providing the RDBMS functionality for the
particular technology. No authentication credentials ap-
pear in the connection string. These are provided by the
loaded implementation of the JAuthenticationService inter-
face to the RDBMS plugin whenever an authentication is
attempted. This feature ensures that the location of the ac-

tual data, as this is defined by the contact string, is fully
decoupled from the authentication parameters and mecha-
nism that are required for accessing them.

A user may enable client-side monitoring for a stated
verbosity level. In this case the RDBMS plugin searches
for a loaded implementation of the IMonitoringService in-
terface and registers information such as begin and end of
user sessions, signaling of transaction boundaries and the
response times of the various SQL statements that are is-
sued.

Some RDBMS implementations that are used for read-
only purposes be based on a web-cache server for the
fast delivery of the query results. With the use of the
IWebCacheControl interface a user may fully control the
caching policies in order to ensure consistency of the data
that are retrieved.

Alternatively to the format specified above, a user may
choose a free format which indicates a logical name for a
database service. In this case a query to an implementation
of the ILookupService interface has to be issued in order
to obtain the corresponding connection string that corre-
sponds to an actual service. The best way of doing so is to
use an implementation of the /ConnectionService interface
which coordinates the control flow among the above com-
ponents and provides application-level connection pooling.

After having retrieved a valid handle to a database
schema the CORAL API provides the user with a large sub-
set of the functionality that is possible through generic SQL
and RDBMS-specific connectivity APIs:

e Schema definition and manipulation operations, such
as creating, droping and redefining tables and views,
as well as defining indices, keys and constraints. It is
also possible to fully describe a given schema and its
elements.

Columns are defined by specifying the correspond-
ing C++ types (eg. int, float, double, string) and

some storage hints such as the allocated size for string
variables. The translation into the actual SQL types
that are eventually used is performed by the RDBMS-
specific plugin which is employed for the technology
in use.

e Manipulating data in tables such as inserting, modify-
ing and deleting rows. Operations with BLOB types
are facilitated through a Blob C++ type provided by
CORAL.

The API supports the execution of such operations
in bunches, where only the input data change be-
tween subsequent iterations. This minimizes the total
roundtrips to the database server and the consumption
of its resources. These result to an improvement of the
overall performance of the application.

e Issuing queries involving one or more tables or views,
allowing for row ordering, application of set opera-
tions, inclusion of sub-queries and the limiting the
rows in the result set. Client-side row caching can be
enabled to minimize the total roundtrips to the server.

The CORAL interfaces have been designed such that
the RDBMS-specific optimizations or standard “’best” prac-
tices in RDBMS programming are handled internally by
the implementation plugins. Typical examples include the
use of database bind variables and the efficient use of
server-side cursors.

IMPLEMENTATION COMPONENTS
Every CORAL release provides:

e Four RDBMS-specific implementations for the inter-
face set related to the functionality of accessing data
in a relational database:

— An implementation to access Oracle databases,
based on the Oracle Call Interface (OCI) version
10.2. It is the implementation which complies to
the full semantics of the CORAL API.

— An implementation to access MySQL databases,
based on the native client library version 5.0. It
is foreseen to be used wherever lower adminis-
tration resources are available.

— Animplementation to access SQLite files, based
on the client library version 3.2. This solution

— An implementation to access FronTier[8]
servers. This is best suited for accessing
read-only data from an Oracle database, that are
updated infrequently.

All of the underlying external packages are C libraries.
This fact has the benefit that the migration to a new
version of the C++ compiler can be done without hav-
ing to rely on the availability of these libraries for the
new compiler version.

o Two implementations of the interface set related to the
retrieval of authentication credentials: one based on
XML files and another on environment variables.

e An implementation of the interface set responsible for
peforming the necessary technology dispatching given
a connection string and the available RDBMS-specific
implementations found at run time.

e An XML-based implementation of the interface set re-
sponsible for peforming logical to physical database
service lookup operations.

An implementation based on LFC[9] is currently un-
der development.

e A simple implementation of the interface set respon-
sible for registering and reporting monitoring events.
It is provided mainly in order to serve as an example
for demonstrating the implementation of the IMon-
itoringService interface. The software teams of the
LHC experiments are expected to provide implemen-
tations which are based on their specific monitoring
systems.

e An implementation of the interface set responsible for
the client-side connection pooling and the overall sys-
tem configuration.

DEVELOPMENT AND RELEASE
PROCEDURES

The development of CORAL is done incrementally
based on individual component tags submitted by the de-
velopers. A collection of tags which is validated through a
series of integration tests becomes a release candidate.

Frequent internal releases are used for early validation
by the experiment software integrators and for providing
a reference release for incremental development for the
CORAL developers.

Every component provides the corresponding documen-
tation. During the release procedure, the documentation
fragments from all packages are automatically assembled
to produce the CORAL User Guide and web documenta-
tion.

Every public release is installed under afs and bi-
naries are provided for all the standard LCG plat-
forms. Currently these comprise slc3_ia32_gcc323,
slc3_ia32_gcc344, slc3_amd64_gec344, slcd_ia32_gec345,
slc4_amd64 _gcc345, win32_vc71 and the corresponding
debug versions.

OUTLOOK

As it has already been mentioned CORAL is primarily
used for the implementation of the relational components
of POOL, such as the Relational File Catalog, Relational
Collections and Relational Storage Manager[10], as well

as COOL. The experiments have picked CORAL both in-
directly through the use of POOL and COOL, but also di-
rectly, especially in on-line applications where there is a
strong requirement for minimizing the stack of external
software dependencies.

CORAL will continue to be evolving in response to new
functional requirements from its main users. However, the
focus will be shifted towards deployment-related issues;
highest priority will be given to ensuring that the software
will contribute towards the success of the forthcoming ser-
vice challenges of the LCG.

REFERENCES

[1] http://pool.cern.ch/coral/
[2] http://pool.cern.ch/

[3] http://lcgapp.cern.ch/project/CondDB/
A. Valassi et al., "COOL Development and Deployment - Sta-
tus and Plans”, Contribution #337, this conference.

[4] http://seal.cern.ch/

[5] http://www.oracle.com/
[6] http://www.mysql.com/
[7]1 http://www.sqlite.org/

[8] S. Kosyakov, et. al.,”Frontier: High Performance Database
Access Using StandardWeb Components”, Proceedings of
the CHEP 04 Conference, Interlaken Switzerland, 27
September - 1 October, 2004.

[9] http://wiki.gridpp.ac.uk/wiki/LCG_File_Catalog

[10] G. Govi etal., "POOL Developments for Object Persistency
into Relational Databases”, Contribution #330, this confer-
ence.

