
WORM AND PEER TO PEER TOOLS FOR DISTRIBUTION AND
MANAGEMENT OF ATLAS SW ON TDAQ COMPUTER CLUSTERS

H. Garitaonandia, IFAE, Barcelona, Spain
H. Zobernig, University of Wisconsin, Madison, USA

Abstract
ATLAS TDAQ software, with six GBytes per release,

will be installed locally in about two thousand machines
in the final system. Already during the development phase,
it is tested and debugged in various Linux clusters of differ-
ent sizes and network topologies. SW managing tools are
not always available. For the distribution of the software
across the network in such cases two technologies have
been tested: virus or worm technology with fixed distri-
bution paths, and adaptive distribution. The first one has
been implemented with a worm named Nile. It is a utility
to launch cryptographic connections in a mixture of paral-
lel and cascaded modes, in order to synchronize software
repositories incrementally or to execute commands. A sys-
tem administrator configures, in a single file, the routes for
the propagation. Therefore it achieves scalable delivery,
as well as being efficiently adapted to the network. The
installation of Nile is trivial, since it is able to replicate it-
self to other computers memory. Moreover, robustness is
issued by the use of routing and monitoring protocols to-
gether with an adaptive runtime algorithm to compensate
for broken paths. The other technology, adaptive distribu-
tion, is implemented with peer to peer protocols, or P2P. In
this solution, a node interested in a file acts as both client
and server for small pieces of the file. The strength of the
P2P comes from the adaptive algorithm that is run in every
peer. Its goal is to maximize the peer’s own throughput, and
the overall throughput of the network. Hence the network
resources are used efficiently, with no configuration effort.
The selected P2P tool is BitTorrent. This paper overviews
the architecture of Nile and BitTorrent and their applica-
tions, describes tests performed in CERN clusters of 12 to
600 nodes with both technologies, and compares the bene-
fits of each.

INTRODUCTION
System administrators and cluster software developers

often have to face the problem of installing programs or
patches in farms with no suitable tool available. It may be
due to incompatibilities between the packaging systems,or
a restrictive configuration of the installer program, etc.

Moreover, there must be an intermediate approach be-
tween more featured tools like Quattor[1], or similar com-
mercial tools, and a simple parallel copy to every com-
puter. This approach should be ready to deal with heavy
installations in heterogeneous external clusters, of different
sizes and network topologies. It should have an straightfor-

NILE

SSH SSH

NILE

1
SSH SSH

6b

etcetera

MAIN NODE SECOND STAGE NODE

NILE

NILE NETWORK

N STAGE NODE

EXECUTABLE

6a

EXECUTABLE2
3
4
5

Figure 1: Nile process hierarchy for execution mode (num-
bers indicate sequential steps)

ward configuration so that installation systems can be setup
quickly, and still be performant.

For this purpose two lightweight systems have been de-
veloped: one with fixed distribution paths based on worm
technology, a program named Nile[2], and another one
adaptive, based on P2P technology. Neither of them pre-
tend to be substitutes of tools like Quattor, they are com-
plementary instead.

Nile’s design is such, that it was easily extended with
the capability of launching some executables. This feature
opens new possibilities.

NILE
Nile is a worm that executes commands in a given list of

hosts or copies files to them. In order to reach all the ma-
chines, it creates a hierarchical control network via worm
propagation, so with only one computer hosting Nile, the
worm is able to reach all the others without accessing their
hard disk.

It can create any propagation tree as defined by the user
in a configuration file, or decide itself how to arrive to those
nodes on the basis of some configured restrictions, such as
maximum number of branches per node. In any of these
cases, if a path is found to be broken or a connection is
lost at some point, the last node in contact with the main
node rearranges the following paths in order to arrive to
all the remaining nodes. The branch that looses contact
with the root node kills itself abruptly, and a new branch is
generated by the previous node.

Nile has three types of shutdown: upon exit, requested

by user and abrupt. They make use of Nile protocol and
POSIX interprocess communication mechanisms to guar-
antee that every reachable node is reached once, and that
the centralized logs report information for every node, even
if it was not up or there was a network error.

Nile is inspired in Distribulator[3], and Rgang[4], but
written from scratch by author H. G. in order to improve
functionalities. It also borrows a couple of ideas from
Metasploit Project[5].

Nile in Execute Mode
When execute mode is set, it can either launch a shell

command in a given list of hosts, upload a perl script to
their memory and execute it, or execute different com-
mands on different hosts.

Figure 1 shows the job generation procedure. In step 1,
the main copy of Nile launches N SSH[6] parallel processes
to N computers. For each SSH client process, an SSH server
process is generated in the next computer. This server pro-
cess (step 2) runs a perl command interpreter with a small
command specified when calling the SSH client process in
the main node. SSH server process redirects the server end
of the channel to that perl command. Then (step 3) the perl
command starts reading and saving to a virtual buffer what
the SSH client is sending: a fresh copy of Nile. Finally (step
4) the command passes the execution control to the start of
that buffer, and (step 5) there is a copy of Nile running on
every node of the second stage.

This copy of Nile tells the one in the main node, via the
established SSH connection, that it is ready. Then receives a
packet with the routing information for the next nodes and
the executable (bash command, perl script...). It creates the
local executable process in a sandbox, and if there are any
nodes left pending from the branch, it generates the packets
for these nodes, and it launches the SSH processes to them.

When the local executable dies, the Nile process in that
computer packs its output and its return code, and sends
them to the previous Nile. It also forwards all the packets
sent by the slave Nile processes in other machines. The root
Nile unpacks the information and presents it to the user.

Though the current number of parallel processes can be
limited at any time and Nile can be configured to be ex-
ecuted in only one stage, the tree like execution has an
advantage over this flat configuration, and even more for
programs with short execution time. The advantage comes
from a more simultaneous execution of the long SSH hand-
shake TSSH. In a 600 machine network, with a two stage
configuration we have 2(TSSH + TNILE), and only 25
(= log2 600) processes are executed in a single machine.
With a flat configuration, limiting the number of parallel
processes to 25 we have about 600

25
TSSH = 24TSSH. Note

that TNILE is usually equal to TSSH .

Nile in Copy Mode
In copy mode Nile is able to synchronize incrementally

many repositories with the main one. The use of RSYNC[7]

NILE

RSYNC

SSH SSH

SSH SSH

RSYNC

NILE

RSYNC

SSH SSH

RSYNC

SSH SSH

MAIN NODE SECOND STAGE NODE

NILE

NILE NETWORK

N STAGE NODE

1

2

3 4

5

etcetera

Figure 2: Nile process hierarchy for copy mode

over SSH as synchronization protocol makes possible to
transfer only modified and absent files.

The procedure (see figure 2) is very similar to the one in
execute mode. With the only difference that before jump-
ing to a computer it first has to be correctly synchronized.

Another option is to use RSYNC on top of TCP, so that
the limiting factor of a synchronization is not the SSH CPU
consumption, but the network. When using one RSYNC job
over SSH in a Gbit Ethernet and with a hyper threaded dual
processor Xeon at 3.06 GHz, one processor reaches the
100% usage due to the SSH encryption, and the throughput
drops down to 80Mbps. If RSYNC jobs are run over TCP
in the same HW, with no compression and with synchro-
nization at file level (not at file piece level [8]), 800Mbps
throughput is reached at low CPU cost.

This way, in a network topology like the one in the fig-
ure 3, where all the switches have the same nominal capac-
ity, the expected total transfer time can be modeled by:

TT = TSTAGE1 + TSTAGE2 = (N + M − 1)F

R

And the throughput by:

REFF = FNM

TT

= R
NM

N+M−1

where R is the rate of any switch, F the file size, and
with Nile configured in two stages to synchronize first a
machine in each of the leaf switches, and then from that
machine synchronize the rest of the machines in the leaf
switch.

Otherwise, if the file is transfered in parallel from the
main repository to all the leaf nodes at the same time, the
expected transfer time is:

TT = NM
F

R

BITTORRENT
BitTorrent[9] is a P2P file sharing software which adapts

to the network topology at switch level for overall effi-
ciency. This is possible thanks to its distributed implemen-

Figure 3: Network topology

tation. It is good at distributing large files, but no incre-
mental synchronization is possible. For incremental P2P
synchronization see PeerFS[10].

Architecture
These are the elements that build the architecture of a

BitTorrent network:

• Many equal peers interested in the same object file. A
special case of the peer is the seeder, a peer with a full
copy of the object file. The executable that provides
the peer’s software is btdownloadheadless.py.

• The tracker, a daemon that helps peers find each other.
It also lets them know where the pieces that conform
the object file are. It uses HTTP as transport protocol.

• A metainformation file that is accessible via an URL
by all the peers. This file contains hash information
about the object file and a pointer to the tracker.

• An adaptive algorithm that runs on every peer. It is
responsible for opening and choking connections with
other peers to maximize the individual throughput.

The peers and at least one seeder access the metainforma-
tion file via URL. They extract the information about the
pieces of the object file, and the location of the tracker.
They connect to the tracker so that the tracker knows about
them, and so that the tracker can provide them with in-
formation about the others. When a peer gets information
about other peers location, and about the pieces of the ob-
ject file that these other peers hold, it starts downloading
from the other peers. And it also uploads upon request its
own pieces of the object file to others. When a peer finds
out that it is not getting much throughput from another one,
it closes that connection and searches, with the help of the
tracker a better one. Hence, an apparently paradoxical ef-
fect of BitTorrent networks is that the more peers it has, the
more efficiently resources are used. The correct delivery
of the object file is guarantied by the SHA1 integrity check
performed on every piece of the object file, as well as in the
whole file.

Figure 4: Network throughput of BitTorrent compared to
parallel copy in LST. One measurement per point.

Start, Monitor and Stop BitTorrent Network
For the purpose of starting the BitTorrent network, a set

of scripts based on Nile were developed. Nile launches the
600 btdownloadheadless.py binaries of the peers redirect-
ing their output to a local file. Then sequential Nile execu-
tions parse the continuous output of the peers, and when all
the peers have finished, either successfully or with error, a
third run of Nile stops the network.

CURRENT APPLICATIONS AND TESTS
SW Distribution in Large Scale Tests at CERN

In June 2005, a 2 GByte file containing a compressed
monolithic installation of ATLAS Trigger DAQ had to be
deployed on 600 machines, for large scale tests (see [11]).
The official distribution tool of the Information Technolo-
gies department, that manages these computers, was Quat-
tor. Quattor was configured so that it could only install
packages in RPM format, which was different than the one
used for the monolithic ATLAS SW. Moreover, these 600
machines were spread over different physical locations,
conforming a virtual cluster, so there was no clear knowl-
edge about the network topology.

A P2P solution was ideal for this task. As it can be ob-
served in figure 4, BitTorrent performed better than parallel
copy. Nile’s full functionality was not yet available then.

For the parallel copy, two different seeders were chosen,
one in front of a 100Mbit switch (up to 123 machines) and
a 200Mbit router for the rest of the machines.

REFF = NMF

TT

= R

The equation above shows that when increasing the num-
ber of machines and also the network resources, the whole
throughput of the network is limited by the first switch, so
the transfer time grows linearly with the number of ma-
chines. On the other hand, with BitTorrent, increasing the
network resources means gaining overall throughput. An

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 4 4.5 5 5.5 6 6.5 7 7.5 8

Fi
le

Si
ze

´•N
um

be
rO

fN
od

es
/T

ot
al

Ti
m

e
[M

bp
s]

Number of Nodes Per Local Switch

Nile vs BitTorrent Network Throughput

nile
bittorrent

parallel
nile theoretiical

parallel theoretical

Figure 5: Network throughput of Nile, BitTorrent, and par-
allel copy (emulation of a simple Quattor configuration).
Four measurements per point.

early version of Nile was used during Large Scale Tests to
launch BitTorrent network.

SW Distribution with Known Network Topology
at PreSeries

PreSeries is a small scale system which represents 10%
of the final ATLAS TDAQ (see [12]). The topology for
the control network is the one of figure 3, with N=4 and
Mi={8,12,30,15}. Until Quattor will be made available,
ATLAS SW is synchronized to local disks by Nile. The
system has profited from its incremental synchronization
when small patches had to be applied. Also during com-
missioning of the network, Nile was used to partition the
hard disks, and other administrative tasks.

For the performance comparison tests, due to practical
restrictions, networks with only N=3 and M={4,6,8} were
used.

Figure 5 shows that Nile performed better than BitTor-
rent, and also better than parallel copy. Its performance was
close to the expected:

REFF = R
NM

N+M−1
= 2700 M

M+2

The parallel copy can be interpreted as an emulation
of the simplest Quattor configuration, with only one SW
repository and a modified client. But more complex con-
figurations of Quattor would lead to throughputs close to
2700Mbps.

Nile as Transport for Other Tools: TDAQ Diag-
nostic Tools

Nile can be used as transport mechanism for executa-
bles by other tools thanks to its reliability, its centralized
logs, its well defined interface, and some useful features
like different command on different computers. A set of
tools, currently under development, is being built on top

Nile. Their objective is to provide, in a fast way: Unix
resource monitoring, TDAQ infrastructure monitoring and
diagnostic, deallocation of resources, etc.

CONCLUSIONS AND FURTHER WORK
When no SW package distribution tool is available we

need an easily configurable and lightweight tool as a tem-
porary solution. Two technologies are appropriate for this:
P2P and worm. The P2P BitTorrent, thanks to its adapt-
ability is appropriate for unknown network topologies as
demonstrated in LST at CERN. The worm Nile performs
better for low loaded and more symmetrical networks like
the one in PreSeries at CERN. Moreover it has the function-
ality of synchronizing incrementally at file and file piece
level, thanks to the underlaying RSYNC.

Nile alone, or the combination of both tools provide a
reliable software distribution mechanism for future large
scale tests in clusters outside CERN.

It would be an interesting issue to integrate Quattor with
BitTorrent, that are compatible because they are both pull
(rather than push) oriented. Or even invest some time and
resources in studying and developing a distributed file sys-
tem on top of P2P that fits ATLAS and LCG needs.

Nile, thanks to its reliable and fast transport mechanism
for executables, is appropriate to build tools on top of it,
like TDAQ diagnostic tools. It is also useful in other ad-
ministrative tasks during commissioning of a network.

ACKNOWLEDGMENT
The authors would like to thank their colleague Gokhan

Unel who was the first user of Nile. We would also like
to thank TDAQ Sysadmins group, and the ATLAS TDAQ
Collaboration for their support.

REFERENCES
[1] http://quattor.web.cern.ch/quattor/
[2] http://nile.ifae.es
[3] http://sourceforge.net/projects/distribulator/
[4] http://fermitools.fnal.gov/abstracts/rgang/
[5] http://www.metasploit.com
[6] http://www.openssh.com/
[7] http://www.samba.org/rsync/documentation.html
[8] Andrew Tridgell. Efficient Algorithms for Sorting and

Synchronization. http://samba.org/tridge/phd thesis.pdf, Feb
1999.

[9] Bram Cohen. Incentives build robustness in bittorrent.
http://www.bittorrent.com/bittorrentecon.pdf, May 2003.

[10] http://www.radiantdata.com/English/Products
[11] Testing on a large scale: Running the Atlas Data Acquisition

and High Level Trigger software on 700 pc nodes. CHEP, Feb
2006

[12] Studies with the ATLAS Trigger & Data Acquisition ”pre-
series” setup. CHEP, Feb 2006.

