
RESOURCE PREDICTORS IN HEP APPLICATIONS

J. Huth
�

, S. Grinstein, P. Hurst, Harvard University, USA
J. M. Schopf, Argonne National Laboratory, USA

Abstract

The estimation of resource needs for data manipulation
is fundamental to the operation of the Grid. Situations will
arise when it will be necessary to determine which is more
expedient, transferring a replica from a remote site or recre-
ating the data from scratch. This paper explores the possi-
bility of predicting end-to-end file transfer times, and then
using these file transfer predictions along with file recre-
ation predictions in a model framework to expedite data
instantiation.

INTRODUCTION

The ATLAS (A Toroidal LHC ApparatuS) experi-
ment [1] will use a data distribution system in which
datasets are replicated across collaboration sites. In this
scheme no single site is likely to be able to store all the
datasets; however, a single dataset may be available at
many locations. Many of these datasets can also be recre-
ated locally based on a limited number of inputs. Users
wishing to instantiate a dataset might choose to download
a replica from a remote site or recreate it from scratch lo-
cally. Making an optimal choice will require estimates of
both the time necessary to download the file and the time
necessary to recreate it.

In previous work [2] we have demonstrated estimates of
the execution times of ATLAS applications that could be
used to recreate datasets. This paper describes our efforts
first to estimate file transfer times and then to implement a
software tool which uses file transfer estimates and recre-
ation time estimates to instantiate a dataset in the short-
est time possible. Our results show that transfer times for
typical ATLAS data files over quiet network channels can
be estimated to approximately 5%, though our estimate in-
creases significantly when the network is busy. We have
tested our software tool on a number of Chimera [3] job
files which implement a simple strawman analysis chain
and have realized time savings consistent with the assump-
tions of the strawman model.

PREDICTING FILE TRANSFER TIMES

Many different groups are investigating sophisticated file
transfer predictions and mechanisms for dynamically opti-
mizing transfer times[4, 5]. Our goal is to investigate a
framework which uses transfer time predictions along with

�

huth@physics.harvard.edu

recreation time predictions to optimize dataset instantia-
tion. We can test the operation of the framework using
relatively unsophisticated file transfer predictions.

We use a simple model based on end-to-end historical
data from GridFTP [6] logs to predict file transfer times.
We use the average observed bandwidth with no file-size
filtering. This simple model works well on the machines
and networks we used during our tests.

We transferred files stored on disks at Brookhaven Na-
tional Laboratory (BNL) and CERN to machines at Har-
vard. The bulk of the transfers originated on a par-
ticular BNL machine, aftpexp01.bnl.gov, with 4 3GHz
Xeon processors and 2GB of RAM, running Linux 2.4.21-
37.ELsmp, and having a 1.0GBit/s connection to the BNL
network. The target Harvard machine has 2 3.4GHz
P4 processors and 1.5GB of RAM, runs Linux 2.4.20-
21.EL.cernsmp, and has a 1.0 GBit/s connection to Har-
vard’s network. A smaller number of files were transferred
from the Linux-based CASTOR servers at CERN. The lo-
cal BNL, Harvard, and CERN networks are connected by
high speed backbones. Typical routes are from BNL over
ESnet to the Manhattan Landing switch, then via the North-
ern Exchange network to Harvard. Average latency from
BNL is approximately 7.8 ms. Files originating at CERN
arrive in Chicago via LHCnet, travel over Abilene to Man-
hattan, and then arrive at Harvard via the Northern Ex-
change. Average latency from CERN is approximately 148
ms.

To establish an initial benchmark 20 files each of 25MB,
50MB, 100MB, 250MB, 500MB and 1GB were transferred
from BNL to Harvard. A plot of the transfer time in sec-
onds versus file size in MB is shown in Figure 1.

Figure 1: Transfer time of files from BNL to Harvard ver-
sus file size.

The average file transfer times are linear with file size.

This initial benchmarking was done when the machines and
networks were quiet. Transfer times for 100MB files (typi-
cal for recent ATLAS data files) copied from BNL to Har-
vard have a variance less than 5%.

Tests of our optimization application occurred during the
same period that “Service Challenge 3” was transferring
large numbers of files. Transfer times were still linear with
file size during this period, but the variance in transfer times
increased; we observed a variance of approximately 90%
for 100MB files, though the variances for larger files and
files transferred from CERN were approximately 55% and
10%, respectively. A plot of transfer times versus file size
for transfers from BNL to Harvard during this period of
high network traffic is shown in Figure 2.

Figure 2: Transfer time of files from BNL to Harvard ver-
sus file size for transfers taking place during times of high
network traffic.

OPTIMIZATION APPLICATION
Having predictions for the execution time necessary to

recreate a dataset and for the time necessary to transfer a
dataset, we have developed an optimization application to
instantiate the dataset in the least amount of time. The al-
gorithm and much of the implementation are general, but
for demonstration purposes we have designed the optimiza-
tion application to be used as a post-processor to optimize
the directed acyclic graphs (DAG’s) produced by Chimera.
Our implementation also uses the Globus Replica Loca-
tion Service (RLS) [7] to index input and output files, and
stores historical execution and bandwidth data in a MySQL
database [8].

A block diagram of the optimization workflow is shown
in Figure 3. A shell script parses the DAG (and the underly-
ing job submission files) looking for output file names, bi-
nary names, and execution parameters (especially the num-
ber of events to be processed). The script searches for the
output files indexed in the RLS, and their host locations
and file sizes are determined. A client then queries the
database for the performance parameters for the particu-
lar binaries and for the historical bandwidths between the
files’ host locations and the local site. The script uses the
information about the file locations and sizes along with
the bandwidth information to predict the file transfer times.

Parse DAG Contents
 |

Find Files in RLS
 |

Query Database
 |
Optimize Instantiation
 |

Output New DAG

Figure 3: Block diagram showing the workflow of the op-
timization application.

The script also uses the performance parameters from the
database with the execution parameters from the DAG to
predict recreation times. The job submission files are then
rewritten to either transfer the output file from the remote
host or to recreate it locally, whichever is faster.

APPLICATION TESTS

We tested our optimization application on a number of
simple DAG’s. Our strategy was first to generate a “non-
optimized” DAG which used a random mix of recreations
and transfers to instantiate a series of test datasets. We ran
our application on this DAG to produce an “optimized”
DAG which minimized the time taken to instantiate each
of the datasets. We then submitted both DAG’s to our lo-
cal queue and compared the total times taken by the DAG’s
to instantiate the full series of datasets. We expected the
“optimized” DAG to take less total time.

We currently find that typical ATLAS execution times
are long compared with typical transfer times. For exam-
ple, the current ATLAS full event reconstruction takes ap-
proximately 20 minutes on our local Harvard machine to
process 50 events and produce a 100MB output file, while
this same 100MB file can be transferred from BNL to Har-
vard in approximately 15 seconds. Currently the choice be-
tween transferring files and executing ATLAS code locally
is clear. However, we envision a time of faster binaries and
more contentious networks in which transfer and recreation
times are more nearly equal, and the choice is not so clear
at the outset. We have chosen to test this equal time sce-
nario by using a simplified binary (keg, the Kanonical Ex-
ecutable for Grids) [9] which has an adjustable execution
time which can be matched to the transfer time.

Strawman Model

We use a Monte Carlo technique to generate non-
optimized DAG’s which instantiate a series of datasets. We
begin by randomly choosing to instantiate one of several
remote files (4 at BNL, 2 at CERN) indexed in our local
RLS. One we have selected a file we know the time neces-
sary to transfer it and can assign it a recreation time com-
parable to the transfer time. We select this recreation time
from a uniform distribution extending from 0 seconds to
twice the transfer time for the file. The average recreation
time, therefore, is equal to the transfer time, but with sub-
stantial variance. Finally, we choose randomly either to
instantiate by transferring or to instantiate by recreation,
and then write this choice into the job submission scripts
of the non-optimized DAG. On average, then, these non-
optimized DAG’s should have a random mix of transfers
and recreations and have a total processing time equal to
the sum of the transfer times of the series of files it instan-
tiates.

When we operate on this non-optimized DAG with our
optimization application it will select the quickest means of
instantiating a particular dataset and rewrite the job submis-
sion scripts. From the details of the model we can predict a
priori that the optimized DAG’s should take 25% less time
on average than the non-optimized DAG’s.

RESULTS
We generated 23 non-optimized DAG’s each of which

instantiated either 10, 20, or 40 datasets. We processed
these non-optimized DAG’s and measured their total run-
ning time. We operated on these non-optimized DAG’s
with out optimizing application and produced optimized
DAG’s. We then processed these optimized DAG’s and
measured their total running time. The results are shown
in Figure 4. The circles show the total running time of the
non-optimized DAG’s versus the predicted time for these
non-optimized DAG’s, while the diagonal crosses show the
total running time for the optimized DAG’s.

Figure 4: Total running time for non-optimized and opti-
mized DAG’s versus predicted time for the non-optimized
DAG’s.

The total running time for the non-optimized DAG’s
agrees reasonably well with the prediction. The running

time for the optimized DAG’s is generally less than that of
the optimized DAG’s, as expected. Figure 5 shows a plot
of the ratio (optimized run time)/(non-optimized run time)
versus run time for the non-optimized DAG. We find that
on average the optimized run times are 28% less than the
non-optimized run times, as expected from the parameters
of our strawman model.

Figure 5: Ratio of run times of optimized and non-
optimized DAG’s versus run time for the non-optimized
DAG’s.

SUMMARY
We have developed an application which successfully

uses simple predictions of file transfer times and dataset
recreation times to optimize dataset instantiation. In many
current instances it may be clear that one or the other
method is fastest. We envision scenarios in which file trans-
fer and recreation times are nearly equal and there is no
clear a priori choice. In these equal–time scenarios our
application can be used to dynamically optimize instantia-
tion times. Tests on an equal–time strawman model demon-
strate a significant time savings.

ACKNOWLEDGMENTS
This material is based on work supported by the National

Science Foundation under Grant Number PHY-0218987.

REFERENCES
[1] ATLAS Collaboration, “ATLAS Detector and Physics Per-

formance Technical Design Report, CERN-LHCC-99-14-15”
(1999).

[2] S. Grinstein, J. Huth, and J. Schopf, “Resource Predictors in
HEP Applications” CHEP 2004, Interlaken, Switzerland.

[3] I. Foster, J. Voeckler, M. Wilde, and Y. Zhao, “Chimera:
A Virtual Data System for Representing, Querying, and
Automating Data Derivation”, 14th International Confer-
ence on Scientific and Statistical Database Management (SS-
DBM’02)

[4] S. Vazhkudai, J. Schopf, “Using Regression Techniques to
Predict Large Data Transfers”, The International Journal of
High Performance Computing Applications (IJHPCA), spe-
cial issue on Grid Computing: Infrastructure and Applica-
tions, Vol 17, No. 3, August 2003.

[5] T. Kosar, G. Kola and M. Livny, “A Framework for Self-
optimizing, Fault-tolerant, High Performance Bulk Data
Transfers in a Heterogeneous Grid Environment”, Proceed-
ings of 2nd Int. Symposium on Parallel and Distributed Com-
puting (ISPDC2003), Ljubljana, Slovenia, October 2003.

[6] B. Allcock, J. Bester, J. Bresnahan, A. Chervenak, I. Foster,
C. Kesselman, S. Meder, V. Nefedova, D. Quesnel, and S.
Tuecke, “Secure, Efficient Data Transport and Replica Man-
agement for High-Performance Data-Intensive Computing”,
IEEE Mass Storage Conference, April 2001, San Diego, Cal-
ifornia.

[7] A. L. Chervenak, N. Palavalli, S. Bharathi, C. Kesselman, and
R. Schwartzkopf, “Performance and Scalability of a Replica
Location Service”, Proceedings of the International Sympo-
sium on High Performance Distributed Computing Confer-
ence (HPDC-13), June 2004.

[8] http://www.mysql.com

[9] GriPhyN Collaboration, GriPhyN Technical Report 2002-10.

