Distributed Analysis Experiences within D-GRID

J. Elmsheuser, Ludwig-Maximilians-Universitdat Miinchen, Germany

Abstract

The German LHC computing resources are built on the
Tier 1 center at Gridka in Karlsruhe and several planned
Tier 2 centers. These facilities provide us with a testbed on
which we can evaluate current distributed analysis tools.
Various aspects of the analysis of simulated data using
LCG middleware and local batch systems have been tested
and evaluated. Here we present our experiences with the
deployment, maintenance and operation of the tools.

INTRODUCTION

The distributed data analysis using Grid resources is one
of the fundamental applications in high energy physics to
be addressed and realized in the near future [1]. An effi-
cient analysis environment and the know how to use and
enhance it are key goals for the community to achieve, if
we are to profit from the high investments made into the
accelerator and detectors at the LHC.

The needs to manage the resources are very high. In ev-
ery experiment up to a thousand physicist will be submit-
ting analysis jobs into the Grid. Appropriate user interfaces
and helper applications have to be made available to assure
that all users can use the Grid without too much expertise
in Grid technology. These tools enlarge the number of grid
users from a few production administrators to potentially
all participating physicists.

D-GRID PROJECT

Since September 2005 five community projects and the
D-Grid [2] integration project (DGI) started within the D-
Grid consortium to build a sustainable Grid infrastructure
in Germany. This infrastructure will help to establish meth-
ods of e-science in the German scientific community. The
community projects will develop together with the integra-
tion project a general and sustainable Grid-infrastructure,
that will be available for all German scientists.

In the context of the German D-Grid project, different
aspects of Grid tools have been assessed. Existing Grid
middleware and tools for distributed and interactive anal-
ysis are reviewed. A gap analysis is pursued to identify
missing features and components. All this is done with a
closer look into the computing environment, Athena, of the
ATLAS experiment [3].

DISTRIBUTED ANALYSIS

The need for distributed analysis follows from the distri-
bution of the data in various computing facilities according
to the ATLAS Computing Model and other LHC experi-
ments [3], and by the availability of the CPU resources re-
quired to perform the actual analysis on large datasets. Ta-
ble 1 summaries the size and time budget and the number
of events expected for the ATLAS experiment and current
experiences from the D@ experiment. The analysis at DO
is based on centrally produced sub skims of the whole data
set based on reconstructed particles. These skims are usu-
ally further reduced in a second skimming step by analysis
specific selection criteria to about 100 to 100000 events in
n-tuple format. The processing is done in a few hundred
parallel jobs on local batch system farms and reduces the
size of the sub skims from a few Terabytes to a few Giga-
bytes. The need for more computing resources in an dis-
tributed environment in the first steps of the analysis chain
becomes clear by extrapolating these numbers to the LHC
experiments, which will have larger event sizes and number
of total events,

An analysis job at the ATLAS experiment will typically
consist of a Python or shell script that configures and runs a
user algorithm in the Athena framework, reading and writ-
ing event files and/or filling histograms /n-tuples. More
interactive analysis may be performed on large datasets
stored as n-tuples. The distributed analysis system must
be flexible enough to support all work models depending
on the needs of a single user or an analysis team. A dis-
tributed analysis system should be robust and easy to use by
all collaboration members. The look and feel of the system
should be the same whether one sends a job to one’s own
machine, a local interactive cluster, the local batch system,
or the Grid.

There are several scenarios relevant for a user analysis:

e analysis with fast response time and a high level of
user interaction,

e analysis with intermediate response time and interac-
tion,

e analysis with long response times and a low level of
user interaction.

The first point is well matched by the parallel ROOT fa-
cility PROOF [5] for interactive usage and fast turn around
times on a local computing cluster. Similarly DIANE [6]
can be used on a local computing cluster or Grid envi-
ronment for fast response and parallel processing but with

lower user level interaction. For the second and third point
an automatic job manager and scheduler in an distributed
analysis environment is the key feature for a robust system.
Here the distributed analysis environment GANGA [4] is
planned to serve the need for a common user interface for
user analysis job configuration, scheduling and submission
to different Grid flavors.

Table 1: The table shows the event data sizes, the corre-
sponding processing times and related operational parame-
ters for the ATLAS and D@ experiments.

Item Unit Value
ATLAS Raw Data Size MB/evt 1.6

D@ Raw Data Size MB/evt 0.25
D@ Rec Data Size KB/evt ~10-50
ATLAS Events evt/year 2 x 10°
D@ Total Events "02-°04 evt 1 x 10°
(L= 380pb~1)

D@ 24-Skim Size evt 55.2 x 108
D@ 2-Skim Size TB 1.1

D@ 2 Presel. n-tuple evt 2 x 10°
D@ Analysis on TMB evt/s 10-30

JOB SCHEDULING

An automatic job manager and scheduler should fulfill
the following specifications:

Interface for job configuration: There is a common in-
terface to set the configuration of programs used, e.g.
software version, configuration of program compo-
nents, data sets, etc. On the one hand this interface
has to be adapted to the specific needs of the user ap-
plication, but must also prove to be flexible enough to
interface to different applications.

Job submission interface for Grid and Batch systems:
User analysis programs can be sent to different local
and remote computing sites. One can choose both
between different batch systems and Grid flavor or
even experiment dependent production systems. Job
splitting and parallel-/bulk submission of analysis
jobs is supported.

Integration of data management: The analysis jobs use
a data management system specific to the experi-
ments. Based on this jobs are sent to the data location,
to prevent the transfer of large data volumes. In addi-
tion data sets are divided and allocated to the sub jobs
in a job-splitting mode.

Resource estimation: The resources required for a job are
estimated, e.g. memory requirements or CPU time.
In addition, available resource informations about the
Grid are gathered.

Resource & Monitoring

Job Splitting

Data
Management

Applications
e.g. Athena

Figure 1: The figure shows a sketch of job scheduler inter-
actions. The job scheduler has a direct user interaction and
needs to be flexible to interact with the different user appli-
cation, job execution systems and data handling systems.

Job monitoring: During execution of the user job there is
a continuous monitoring of the job status. Informa-
tion about the remote execution site, queue status and
successful termination are collected.

Job error checking: It is verified that a job has been suc-
cessfully terminated. Informations about possible er-
rors are gathered and categorized. The job scheduler
should offer an automatic job resubmission function
for failed jobs.

Collecting and merging of the results: After a job fin-
ishes, logging and error messages should be automati-
cally transfered to the submission site. It is possible to
merge job results if there have been executed in paral-
lel sub jobs.

Job archive: There exists a job archive, to offer informa-
tions about terminated user jobs and to provide tem-
plates for new user jobs. It would be desirable to con-
nect this archive to a meta data storage system.

Figure 1 shows the outline and interaction of a job sched-
uler with the different components. The job scheduler has
direct user interaction and needs to be flexible to interact
with the different user application, job execution systems
and data handling systems.

JOB SCHEDULER EXAMPLES

As an example of a job and scheduling manager
GANGA was closer examined and used. GANGA (Gaudi
/ Athena and Grid Alliance) is an interface to the Grid that
is being developed jointly by the ATLAS and LHCb ex-
periments. GANGA is a front end for job definition and
management of analysis jobs to run in an distributed envi-
ronment. It helps in the creation and configuration of user
analysis jobs, submission of the jobs, monitors job status

and helps in saving any output. In particular GANGA aims
to help with setting up jobs that run the main ATLAS and
LHCD applications. It can be run on the command line,
with Python scripts or via a graphical user interface. Many
of the features mentioned in the previous section are al-
ready included in GANGA:

e In GANGA one can setup generic user programs or
e.g. Athena, interactively, with Python scripts or with
a graphical user interface. The jobs can be sent for
execution to the following systems: local computing
systems, LSF- and PBS batch systems, LCG and gL ite
and more. It is planned to also include the ATLAS
production system and further grid flavors like OSG
and NorduGrid.

e The data management is currently implemented at a
basic level and will be extended in the near future.
Data is currently sent with the job to a remote site or it
can be accessed directly at the remote site. Based on
the functionality of the LCG middleware user jobs are
sent to the data. Job splitting and parallel execution
are currently being developed.

e Job monitoring is included. The level of informa-
tion being fed back into GANGA depends on the user
analysis job and the amount of information available
through the Grid middleware. An extension to web
based monitoring might be useful especially when a
larger amount of jobs are being executed.

e Job error checking exists on the level of Grid- and
Batch system middleware. Error handling in program
execution is not implemented.

e After job termination program logging and error mes-
sages are automatically stored in a job archive to-
gether with the job configuration. There is not yet a
mechanism to merge results.

GANGA has been successfully extended to incorporate
different functionalities: a plugin was written to execute
generic and experiment specific user programs on PBS
batch systems. This extension was developed and inten-
sively tested at the German Tierl computing site Gridka in
Karlsruhe. There also exists a prototype for the parallel ex-
ecution of several ATLAS framework jobs. This plugin is
used to split Athena jobs into several sub jobs based on the
data set. The sub jobs can be executed on a local or remote
computing systems.

JOB SCHEDULER USAGE

A typical example for a user task is a small scale Monte
Carlo production of a few ten thousand events. This was
exercised using GANGA and the ATLAS experiment com-
ponents for generation, simulation and reconstruction. This
scenario mimics the analysis patterns mentioned before of

intermediate to low user interaction and intermediate to
long response times.

The Monte Carlo event production was done in sev-
eral steps: event generation, simulation, digitization and
reconstruction. For each step jobs were sent to 3 differ-
ent German Tierl/2 sites in separate grid jobs with input
and output files and results stored on the grid storage ele-
ment at Gridka in Karlsruhe. Every job consisted of a start
and wrapper script that configured the different Athena set-
tings and input and output datasets. The processing of the
datasets, that consisted of a few thousand events, had all
been parallelized into sub jobs of 50 events each. One pro-
duction of 10000 Monte Carlo events was done with 603
jobs and only 2 failed jobs because of worker node failure
at one grid site. A second and third production of 1000
events each was done with a total of 106 jobs each and
about 50% jobs failing because of file catalog problems and
database changes in the ATLAS system.

GANGA performs well in this test of configuring, sub-
mitting, monitoring and output retrieving of these few hun-
dred jobs. The submission time of a single job to the LCG
is about 10-20 seconds, ie. submission of a few hundred
jobs need a bulk submission feature like in gLite. Further-
more the error handling and recovery of failed jobs in the
user analysis code needs to be improved by an automatic
resubmission or error parsing. This could be assisted by a
bookkeeping mechanism of the processed data sets.

CONCLUSIONS

It has been shown that the distributed data analysis us-
ing Grid resources is one of the fundamental applications
in high energy physics that is being used in the upcom-
ing phase of LHC experiment data taking. Several differ-
ent user analysis scenarios require different response times
and levels of user influence. User analysis with intermedi-
ate to long response time and low influence need a robust
and easy to use interface and job scheduler to make use of
all available resources.

ACKNOWLEDGEMENTS
This work was supported by the BMBF, Germany.

REFERENCES

[1] D.Baberis et. al, Common Use Cases for a HEP Common
Application Layer for Analysis, LHC-SC2-2003-032

[2] D-Grid project webpage:
http://www.d-grid.de/

[3] ATLAS Computing TDR, CERN-LHCC-2005-022

[4] GANGA project webpage:
http://ganga.web.cern.ch/ganga/

[5S] ROOT and PROOF webpage:
http://root.cern.ch/

[6] DIANE project webpage:
http://cern.ch/diane/

