EVENT DATA MODEL IN ATLAS

E. Moyse, University of Massachusetts, Amherst*
F. Akesson, CERN, Geneva, Switzerland®

Abstract

The event data model (EDM) of the ATLAS experiment
is presented. For large collaborations like the ATLAS ex-
periment common interfaces and data objects are a neces-
sity to insure easy maintenance and coherence of the ex-
periments software platform over a long period of time.
The ATLAS EDM improves commonality across the de-
tector subsystems and subgroups such as trigger, test beam
reconstruction, combined event reconstruction and physics
analysis. Furthermore the EDM allows the use of com-
mon software between online data processing and offline
reconstruction. One important task of the EDM group is
to provide know-how and the infrastructure to secure the
accessibility of data even after changes to the data model.
New processes have been put into place to manage the de-
coupling of the persistent (on disk) storage and the transient
(in memory), and how to handle requests from developers
to change or add to the stored data model.

INTRODUCTION

This report gives an overview of how the ATLAS EDM
is constructed within the constraint of the ATLAS comput-
ing model and shows the benefits of the approaches taken.
All subdetectors are represented in the EDM but here em-
phasis is given to recent developments, in particular the at-
tempts to de-couple transient and persistent data models.

THE ATLAS COMPUTING MODEL

The ATLAS detector [1] will produce up to one PetaByte
of data per year, a vast amount of information which pro-
hibits the wide distribution of raw data to worldwide col-
laborators. To enable physicists to analyse the data at re-
mote sites two additional stages of datasets are introduced:

e The Event Summary Data (ESD) which contains the
detailed output of the detector reconstruction and will
be produced from the raw data. It will contain suffi-
cient information to allow particle identification, track
re-fitting, jet calibration etc. thus allowing for the
rapid tuning of reconstruction algorithms and calibra-
tions. The target size for the ESD is 500 kB per event.

e The Analysis Object Data (AOD) which is a summary
of the reconstructed event, and contains sufficient in-
formation for common analyses. Several tailor—-made

*edward.moyse@cern.ch
T fredrik.akesson@cern.ch

~1.6Mb/Event Raw Data

B 2

Event Summary

~500Kb/Event
Data (ESD)
~100Kb/Event AnaIySiS Object
Data (AOD)

S

Figure 1: The layers of the ATLAS computing model, each
smaller than the last.

streams of AOD’s are foreseen for the different needs
of the physics community. The AOD can be produced
from the ESD and thus makes it unnecessary in gen-
eral to navigate back and process the raw data, which
implies significant cost and time benefits. The target
size for the AOD is 100 kB per event.

Inevitably there will be some overlap between the different
reconstruction realms: for example, some objects will exist
in both AOD and ESD.

There will also be “’tags” on each event, indicating some
general features of the event, and thus allowing the quick
access of the required events. The target size for the tags is
1kB per event.

REQUIREMENTS FOR THE EDM

The ATLAS EDM is shaped by many considerations: it
must allow the correct level of modularity to fulfill the con-
straints of the computing model with respect to the differ-
entiation between raw data, ESD and AOD.

It must also fulfill the requirements of the Athena soft-
ware framework [4] used by ATLAS. The ATLAS EDM
must interact cleanly within this framework and the asso-
ciated tools and services it provides. Moreover the EDM
must follow ATLAS coding standards, such as enforcing
the separation of event and non-event data - e.g. by avoid-
ing having detector description! in the event data. In fact

' ATLAS uses GeoModel for its detector description

in Athena there are different types of storage used for tran-
sient event data (i.e. data that only exists for an event) and
data with a lifetime of the run.

The EDM must be persistifiable: ATLAS uses POOL [5]
to read and write data to disk, and therefore it must be pos-
sible to store all EDM object in POOL format. This is a
non-trivial requirement and has set serious constraints on
the allowed designs of the EDM. For instance, links be-
tween persistified objects have to be possible. Normally
this could be done with pointers and references (e.g. link-
ing a track to the measurements used to produce it) but
these cannot easily be persistified and so “DataLinks” must
be used instead. Links across levels (i.e. from AOD
to ESD) are another necessary complication, and are re-
stricted.

Finally, it must be possible to navigate from the EDM
data object to the underlying simulated event (i.e. it must
be possible to access the ‘truth’ from the EDM objects).

Above and beyond all these technical requirements, the
EDM must promote code re-use by allowing the factoring
out of common tools and common data objects. For exam-
ple, data objects should, if possible, be shared between the
online trigger (which has strong requirements, such as be-
ing able to run in a multi-threaded environment and speed)
and the offline reconstruction software, as well as between
the various sub-detector systems. At the same time the
EDM must minimise unnecessary dependencies.

THE ATLAS DETECTOR

ATLAS has two types of sub-detector systems: trackers
(the Inner Detector [6] and Muon Spectrometer [7]), which
measure momenta of charged particles, and calorimeters
(Tile [3] and Liquid Argon [2]), which measure energy de-
positions. As mentioned before, a major aim in the design
of the EDM is to share as much code as is possible within
these common sub-system types.

Calorimeters

The two types of calorimeter have different data formats
at the raw data level, however for reconstruction the EDM
uses one common calibrated input object, “CaloCell”.
CaloCells can be generated either from the raw data or
simulation. For example, fig. 2 (which is a schematic rep-
resentation of the calorimeter reconstruction chain) shows
the raw data being fed to “CellMaker” algorithms, which
produce CaloCells. From this moment on data classes are
common to both calorimeter types.

Neighbouring CaloCells are used by “CaloTowerMaker”
to produce calorimeter “towers”, then these towers (as well
as cells) are taken by “CaloClusterMaker” to construct
“clusters”, collections of calorimeter elements (which can
even contain clusters themselves).

A navigation scheme allows access to constituent data
objects e.g. it is possible to retrieve all the CaloCells used
to create an EnergyCluster.

All calorimeter data classes inherits from a four-
momentum interface which allows the use of common tools
only requiring kinematic information.

Finally, the CaloCells are now being compressed to re-
duce the size on disk[8].

Tracking Detectors

As with the calorimeter, a basic requirement for the
EDM is to support different tracking devices with shared
code, e.g. the muon chambers and drift tubes, the inner de-
tector transition radiation tubes and silicon detectors must
all be provided for by common tracking software.

The most obvious requirement is a common track class,
but more than that, the EDM needs standard definitions of:

e Track parameters (on all the various surfaces found
along the track);

o Interfaces to hit-clusters, drift circles, etc;
e Error Matrices, etc;

Tracking must handle many different coordinate frames,
as a track can span the entire detector and have measure-
ments on many different surfaces (i.e. discs, planes, cylin-
ders, etc.). However, the various tracking tools and algo-
rithms must not be expected to handle the geometry of the
detector. Generalised tools allow tracking to work on both
the Inner Detector and the Muon Spectrometer tracks. This
can best be explained with the aid of fig. 3, which shows an
overview of the Tracking reconstruction chain.

Bytestream convertors take the data from the detector,
and form the raw data objects. These are then used to create
“prepared raw data”, i.e. clusters (for example, from the
pixel detector) or drift circles (for example, from the muon
monitored drift tubes).

Some of the tracking sub-detectors return what are es-
sentially one-dimensional measurements, so these must be
combined to form two-dimensional “SpacePoints”.

The “PrepRawData” (along with the SpacePoints) can
then be used to find tracks. Finally, the tracks can be used
to find vertices, or to create the TrackParticles (for physics
analysis at the AOD level).

The benefits of these common interfaces are that many
tools and algorithms used in reconstruction do not need to
know the specifics of the detectors, and these generalised
pieces of software can work equally well on the Inner De-
tector and Muon Spectrometer.

Common Track One of the most important elements
in the ATLAS EDM is the common Track. It must work in
a wide range of applications from:

e online (where speed and the ability to work in a multi-
threaded environment are important requirements);

e alignment studies (which need very detailed informa-
tion);

Raw CaloCell CaloT Energy
Channel e AR Cluster
I CaloTower CaloCluster

SieliMaker Maker Maker

Figure 2: Schematic diagram of calorimeter reconstruction. The top line contains the data objects, whilst the bottom line
shows the algorithms used to process them. Data flows from left to right.

7Ram.lData Brep SpacePoint Track Primary
Objects RawData Vertex

usfering +

ByteStream i SpacePoint
DriftCircle -
Converters Formation Formation

TrackParticle

n
o
(7]
-

Pr in

Figure 3: Tracking reconstruction chain. The boxes on the top represent data objects, whilst the boxes on the bottom show
the algorithms which work on them. The arrows show the direction of data flow.

e general reconstruction.

Tracks at ESD level consist of fitted measurements on mul-
tiple surfaces, and are the output from the fitters, and the
input to the combined reconstruction (all reconstruction
packages should use the same track class).

These tracks are (necessarily) relatively large objects and
for AOD something more lightweight is needed: therefore
“TrackParticles” are created from Tracks. These objects
contain summary information about parent track (number
of hits on track etc), as well as the perigee parameters.

They are physics analysis objects with 4-momenta in
the physics frame, and therefore (as with the calorimeter
data objects) inherit from the common momentum inter-
face, [4Momentum.

They can be used for vertex finding, but not re-fitting etc.
(as the hits/measurements are missing).

Analysis Objects

IParticle l4Momentum INavigable

Analysis
Object

Figure 4: Representation of an analysis object, inheriting
from the IMomentum, IParticle and INavigable interfaces.
Examples of analysis objects would be muons, bjets, taus
etc.

Fig. 4 shows a generic analysis object. Since it rep-
resents a physical object, it inherits from [4Momentum
and IParticle, whilst the INavigable interface allows (in
the same manner as the calorimeter objects) navigation
netween constituent objects.

Tools which only require kinematic information will just
use the I[4Momentum interface, whilst other complexer
analyses might need more detailed information. In any
case, the use of common interfaces dramatically simplifies
the analysis code.

Trigger

The ATLAS trigger [9] is responsible for the online event
selection. As such, a minimum requirement is that the
EDM stores the trigger criterion (or hypotheses) which
were passed for each level of the trigger (Level-1, Level-
2 and Event Filter). Beyond that, if space permits it would
be useful to store sufficient information to allow the trigger
algorithms to be re-run (such as the trigger towers used for
the Level-1 calorimeter decision etc).

PERSISTENCY

Issues

There are some problems with ATLAS persistency
mechanisms, namely:

e Schema evolution (see below)

e Size (our ESD is too large for our computing require-
ments)

e Performance issues reported with e.g. stl maps.

Schema Evolution

As we understand more about what is required to per-
form calibration, physics analysis etc. with ATLAS it is
necessary to change the interface of our data objects, a pro-
cess known as ”schema evolution”. The reason that this is
such a problem is that when ROOT reads data back in, it
first creates an object of the same type (using the default
constructor) and then streams data into the object If the ob-
ject that is created has a different shape from the object that
was written out (e.g. an data object was removed from or
added to the class), then this streaming may not work — in
the worst case we are left with subtly corrupted data, but
more usually the data simply cannot be read.

Solutions

Various solutions to this problem have been discussed,
culminating in the creation of an Event Management Board
of experts, to determine what is to be persistified (and in
what format), and also to give general guidance to devel-
opers. From a technical point of view, we are currently
testing a new design, which will consist of two EDMs:

e one for the transient world (i.e. designed for ease-of-
use), and

e one for the persistent world (i.e. designed for as com-
pact storage as possible, which will be tightly con-
trolled by the EMB, and monitored by new tools to
prevent accidental schema evolution)

The aim to have raw data classes done by Release 12 (i.e.
by the end of March), and to progress to the more complex
classes soon afterwards.

Transient EDM Persistent EDM

{ CscRawDataContainer] Convertors { CscRawDataContainer pl

>

{CscRaWDataCollection] -— [CscRaWDataCollection . pl

{ CscRawData CscRawData_pl

_L CscRawData p0

Figure 5: The proposed changes to the ATLAS Event Data
Model.

Fig. 5 shows how the split would work. The version of
the data object stored on disk, the persistent object, has
its version explicitly defined in the name. In the example
shown, there are two persistent versions of CscRawData,
CscRawData_p0 and CscRawData_p1. If we try to read old
data into Athena, the object that is created is still the old
type (CscRawData_p0) meaning we have no schema evo-
lution problems. The convertors can now either pass this
data to a specific method which handles the conversion to
the current transient EDM, or fail gracefully. In any case,
the process is under the control of ATLAS.

There are some further benefits: when designing the per-
sistent classes we can ensure the use of ROOT split mode
to optimise performance, and we can ensure that the data is
as compressed as possible.

CONCLUSION

The transient EDM of ATLAS is rapidly stabilising, and
both in the calorimeter, and the tracking sub-detectors, the
use of common interfaces has allowed the development of
shared tools (e.g. fitters which work on ID and Muon data).
Most importantly, it appears to be fulfilling the design re-
quirements and has now been tested on real data, both from
cosmics and from the Combined Test Beam.

The remaining problems with persistency are being tack-
led both at the human level, with the creation of the Event
Management Board, and at the technical level, with the pro-
posed split into transient/persistent EDMs.

REFERENCES

[1] ATLAS Collaboration, Technical Proposal for a General-
Purpose pp Experiment at the Large Hadron Collider at
CERN, CERN/LHCC/94-43

[2] ATLAS Liquid Argon Technical
CERN/LHCC/96-41, December 1996

[3] The ATLAS Tile Calorimeter Technical Design Report ,
CERN/LHCC/96-42, December 1996

[4] Athena Developer Guide (draft), version 2, Athena
website, http://atlas.web.cern.ch/Atlass=GROUPS/ SOFT-
WARE/OO/architecture/General/index.html

[5] D. Dilllmann et al., The LCG POOL Project: General
Overview and Project Structure, CHEP 2003 Proceedings,
MOKTO007

[6] ATLAS Inner Detector Technical
CERN/LHCC 97-16, April 1997

[71 ATLAS Muon Spectrometer Technical Design Report,
CERN/LHCC/97-22, May 1997

[8] D.Primor, The Calorimeter Event Data Model for the ATLAS
Experiment at LHC, Presented at CHEP 2006

[9] ATLAS High-Level Trigger Data Acquisition and Controls
Technical Design Report, ATLAS TDR-16, June 2003

Design Report

Design Report,

