
HIGH END VISUALIZATION WITH SCALABLE DISPLAY SYSTEM

Dinesh M. Sarode*, Bose S.K.*, Dhekne P.S.*, Venkata P.P.K.*,

Computer Division, Bhabha Atomic Research Centre, Mumbai, India

Abstract
Today we can have huge datasets resulting from

computer simulations (CFD, physics, chemistry etc) and

sensor measurements (medical, seismic and satellite).

There is exponential growth in computational

requirements in scientific research. Modern parallel

computers and Grid are providing the required

computational power for the simulation runs. The rich

visualization is essential in interpreting the large, dynamic

data generated from these simulation runs. The

visualization process maps these datasets onto graphical

representations and then generates the pixel

representation. The large number of pixels shows the

picture in greater details and interaction with it enables

the greater insight on the part of user in understanding the

data more quickly, picking out small anomalies that could

turn out to be critical and make better decisions.

However, the memory constraints, lack of the rendering

power and the display resolution offered by even the most

powerful graphics workstation makes the visualization of

this magnitude difficult or impossible. The initiative to

develop high end visual environment at Computer

Division, BARC explores how to build and use a scalable

display system for visual intensive applications by tiling

multiple LCD displays driven by the Linux based PC

graphics-rendering cluster. We are using the commodity

off-the-shelf components such as PCs, PC graphics

accelerators, network components and LCD displays.

This paper focuses on building an environment which

render and drive over 20 millions of pixels, using the

open source software framework. We describe the

software packages developed for such a system and its

use to visualize data generated by computational

simulations and applications requiring higher intrinsic

display resolution and more display space.

INTRODUCTION

The visualization is essential in interpreting the large,

dynamic data generated from computer simulations and

sensor measurements. The visualization processes maps

the datasets onto graphical representations and then

generate the pixel representation. When the graphical

representation containing billions of polygons is mapped

to pixels provided by the conventional display device then

many polygons fall on the same pixel and are contained

within a pixel. This may lead to aliasing or even missing

small data features contained in these tiny polygons that

could turn out to be critical. If we have a high resolution

display, then the large number of pixels shows the picture

in greater details and interaction with it enables the

greater insight in understanding the data. However, the

memory constraints, lack of the rendering power and the

display resolution offered by even the most powerful

graphics workstation makes the visualization of this

magnitude difficult or impossible.

While the cost-performance ratio for the component

based on semiconductor technologies doubling in every

18 months or beyond that for graphics accelerator cards,

the display resolution is lagging far behind. The

resolutions of the displays have been increasing at an

annual rate of 5% for the last two decades. The ability to

scale the components: graphics accelerator and display by

combining them is the most cost-effective way to meet

the ever-increasing demands for high resolution. This

paper focuses on building the scalable display system

which render and drive over 20 millions of pixels. We

discuss the system architecture, hardware and software

environment for the system. We also discuss the software

packages developed for the system and its use to visualize

data.

SYSTEM ARCHITECTURE

Unlike the most scalable display systems today, which

use high-end graphics machines and high-end projectors,

our system is built with low cost commodity components:

a cluster of PCs, PC graphics accelerators and LCD

displays. In our architecture, a display is constructed by

tiling LCD displays. To reduce the seams between the

tiles, we removed the outer casing of the LCD displays

and tiled them in a custom designed frame. A single

workstation drives a single display; system software

controls rendering the portion of graphics apportioned to

that display. A separate workstation of the cluster is used

to control the entire tiled display. (Figure 1)

Network

Figure 1: A schematic representation of the system
__

*{dinesh, bose, dhekne, panikv}@barc.ernet.in

The commodity projectors can also be used for

seamless tiled display. The projectors are costly as

compared to LCD monitors and they are hard to align.

The brightness, color coordination, balance and edge

blending also needs to be addressed. While tiling LCDs,

the borders of the LCDs (seams) provide a grid-like

pattern etched on the display, in which we can’t display

anything. The seams introduce issues while visualization

of the data. Our software environment treats the borders

as if represented by hidden pixels thereby creating the

“panned window” effect.

HARDWARE

We designed the first 2x2 tiled LCD display system

that provides a display resolution of 2048 x 1536 (3.1

million) pixels. Each tile is 15″ ViewSonic VE510+

display with maximum resolution of 1024x768. A PC

Linux cluster of five workstations running Red Hat 7.2 is

used to drive the display system. The workstations are

Intel P-IV 1.7 GHz processor, 256 MB RDRAM and

3Dlabs GVX1 pro AGP graphics accelerator card.

Communication between them is handled over the Fast

Ethernet.

We then scaled the display to 4x4 by tiling 16 17″

ViewSonic VE 700 LCD displays driven by cluster of 17

(16+1) workstations running Red Hat 7.2. Fig. 2 shows

the schematic representation of high-resolution display

system. The resolution of our new system is 5120x4096

(20 million) pixels. In our scaling efforts, we used two

commodity interconnects: Gigabit Ethernet for graphics

related communication and Fast Ethernet for file sharing

etc.

SOFTWARE ENVIRONMENT

Moving the visualization applications to scalable

display system makes software environment much more

complex than the shared memory multi processor multi

pipe systems. In the PC rendering cluster there is no

single place to share the data, the programmer must know

the cluster configuration and provide ways to effectively

share data through interconnecting network.

The tiled display system must also fulfil three

functional requirements: genlock, swaplock and datalock.

Genlock synchronizes the video frames from each node of

the cluster so that final image presented is coherent. It is

critical for active stereo on tiled display. Each graphics

card in a cluster renders different number of polygons

resulting in different rendering times for each frame.

Swap lock ensures the frame buffers swaps are

synchronized. Data lock further ensures the

synchronization of the views to maintain consistency

across the tiles. We have not used any explicit genlock for

tiled display whereas swaplock and datalock has been

implemented in the system software.

System Software

The software architecture for the system is based on

open source Chromium and DMX. Chromium provides

the mechanism that allows many existing OpenGL based

graphics applications to use the rendering capabilities of

the cluster and the resolution offered by tiled display

without any modification [4]. The other X11 applications

requiring more display space and resolution use DMX

(Distributed Multihead X) infrastructure to run on the

tiled display system [6]. We developed the graphical

control panel software to manage the entire system and to

automate time consuming tasks and functionalities often

required by users while working with the tiled display

system.

Chromium

Chromium is a flexible framework for distributed-

rendering on cluster of computers, initiated at Stanford

University. The rendering pipeline consists of three

conceptual stages: geometry database (graphics

primitives), geometry processing (transformation,

clipping, lighting etc) and rasterization (scan-conversion,

shading and visibility). The graphics accelerator cards of

the cluster provide multiple rendering pipelines. The

decision to split up and recombine the rendering workload

can happen before or after either of the geometry

processing or rasterization stage. Thus we can have sort-

first, sort-middle, and sort-last architectures for

distributed rendering [5].

The sort-first architecture distributes the graphics

primitives early in the rendering pipeline (geometry

processing) to the rendering node that can do the

remaining work. This is achieved by dividing the display

into tiles and making rendering nodes responsible for all

rendering calculations that affect their respective tiles.

The screen-space bounding box of the primitive

determines the tile into which it falls. The primitives are

then distributed over an interconnect network to the

appropriate rendering nodes. In sort-middle, primitives

are distributed arbitrarily to geometry processing units

and then screen space primitives are redistributed in the

middle of the rendering pipeline to the appropriate

rasterizer responsible for a portion of the display screen.

The sort-last architecture assigns arbitrary subsets of the

primitives to the rendering nodes which rasterize into

pixels values no matter where they fall in the screen. The

rendering nodes then transmit these pixels over an

interconnect network to compositing nodes which resolve

the visibility of the pixels according to the alpha or Z-

buffer entries of the pixels.

The main advantages of sort-first are relatively less

communication requirements, can deal well with both

large number of primitives and large number of pixels.

The sort-last approach is scalable but requires an image

composition network with very high bandwidth. The sort-

middle approach is very difficult in a cluster-of-PCs

system; we can’t break the rendering pipeline as it is

implemented in hardware.

Chromium implements sort-first, sort-last and hybrid

algorithms. It works by replacing the native OpenGL

library with its own. It directly operates on the stream of

the OpenGL graphics commands issued by the

application. It provides Stream Processing Units (SPU).

Each SPU has its input - streams of graphics commands,

perform some operation on these commands and passes

them on. SPUs can be chained to perform combined

operations. The SPUs for tiled rendering are tilesort,

render and pack. Tilesort SPU implements the sort-first

algorithm. The tilesort SPU sorts the OpenGL commands

into tiles so that they are packed and sent over a network

to the nodes handling the tiles. Render SPU passes the

stream to the node’s local OpenGL implementation. Pack

SPU packs the stream into a buffer for transmission to

cluster servers.

Figure 2: Sort-First configuration

A python script called mothership controls running

programs through Chromium. It contains the tile layout,

SPU chains and nodes used for running the application.

The mothership runs an event loop waiting for

communication from the crappfakers and crservers. The

crappfaker will run the OpenGL program and relink it

against the defined SPU libraries. The crserver is used for

tiled rendering and any SPU that requires network access

for data transmission. The Figure 2 shows the sort-first

configuration used by our system.

DMX (Distributed Multihead X)

DMX is an open source framework, distributing X

Window sessions across the nodes of a tiled display such

that the X display/desktop can span many individual

tiles. It is used to run any program that runs under X

Windows on the tiled display. The program can use the

entire display space and resolution offered by the tiled

display [6].

It works by providing a front-end X server acting as a

proxy to a number of back-end X servers running on the

nodes of the cluster driving tiled display. X clients will

connect to front-end X server running on the control node

of the tiled display. Rendering and input requests will be

accepted by the front-end server and then will be sent

appropriately to back-end servers.

Graphical Control Panel

The graphical control panel provides functionality to

start (login) and stop (logout) X windows on all rendering

tiles, reboot / shutdown the entire cluster or individual

nodes, changing display power management, viewing the

system information of the cluster nodes such as process

tree, memory, cpu, network utilization. It also provides

the interface for running scripts that are quite useful for

cluster control such as parallel copy when changes are

needed across the cluster and parallel execution for

performing simple tasks on a cluster. The control panel

also continuously monitors the status of the cluster nodes.

The software is implemented in two parts. One part

handles the entire GUI and runs on the Control PC, which

controls the tiled display. Second part implements the

functionalities provided by the software which are

invoked remotely on the nodes of the cluster.

APPLICATIONS

The tiled display-aware software packages available for

visualization, display of images and animations currently

includes:

AnuVi

CFD visualizations with high-resolution grid enhance

the quality of the visual information. Interacting with

large CFD data sets in real time and providing rich and

deep visual feedback is achieved only with rendering

cluster and tiled display.

To achieve this we have developed AnuVi, the Post-

Processor and Scientific Visualization Framework that

run on our scalable system through chromium and DMX

as well as on desktop. It is an open source software

system for 3D computer graphics and visualization

supports a wide variety of visualization algorithms

including scalar, vector, tensor, texture and volumetric

methods. It is capable of delivering visualizations for

other disciplines also like Structural, Thermal and

Medical imaging. It is based on the open source libraries

of VTK and WxWidgets.

The Reactor Safety Division of BARC has initiated

computational simulation of tsunami generation, its

propagation and finally run up evaluation for protection

of public life, property and various industrial

infrastructures for the coastal regions of India. Our

scalable display system and AnuVi helped in visualizing

this huge simulation data. AnuVi was used to generate

about 200 high resolution images from the simulation

data. We then generated a movie in streaming media

format (SM). The movie was played on the system

through DMX by using the Blockbuster – an open source

movie player [9]. The movie is revealing and enables the

user to get greater insight as it displays huge simulation

data which includes multiple time steps at the native

resolution (20 million pixels) of tiled display. (see Fig. 3)

Crserver

RenderSPU

Graphics Card

Tile 1

Crserver

RenderSPU Tile 2

Crserver

RenderSPU Tile 16

N

E

T
W

O

R

K

Server 1

Server 2

Server 16

Crappfacker

Xlib TilesortSPU

Graphics Card

Clien

Packed OpenGL

Commands

.

.

.

Graphics Card

Graphics Card

Figure 3: Visualization of tsunami simulation data

CollabCAD

CollabCAD is a java based distributed 2D&3D

CAD/CAM and CAE software system being developed

by the Computer Aided Design Group of National

Informatics Centre, New Delhi [7].

Figure 4: CollabCAD on tiled display

We have augmented the display capabilities of

CollabCAD with our scalable display system which is

extremely useful for visualizing huge CAD models. It

provides detailed view of the individual components of

the model and as well as overall interrelationships often

required for design reviews. The CollabCAD is also

configured to run through chromium. Figure 4 shows one

such model.

Tiled MPEG/AVI movie player

The precomputed MPEG/AVI movie is a powerful way

of visualizing complex structures or simulations. We

developed tiled movie player that plays the MPEG/AVI

movie at the native resolution of the tiled display. It is an

MPI (Message Passing Interface) application where the

master reads the mpeg/AVI movie, decodes it and divides

it into several sub-streams. It then redistributes the sub-

streams to the slaves. The slaves convert the sub-stream

OpenGL textures, which are mapped to the respective

tiles managed by the slaves, thus forming the entire frame

at the native resolution of the tiled display.

Tiled Image Viewer

It is useful for displaying large-format images,

particularly those containing many millions of pixels. The

typical display does not have sufficient resolution,

requiring scrolling or image shrinking which results in

loss of context and lack of details.

CONCLUSION

Our high-end visual environment with commodity

components and open source software is a reasonable

alternative to multiprocessor, multipipe systems. The

advantages are low cost and technology tracking. The

large field of view (FOV) coupled with 20 times more

pixels than the standard display provides the deep and

rich visual experience. We found that the approach is

scalable, works well with various computing and display

configurations. The chromium and DMX support the

scalable display system and hide its complexity from

OpenGL as well as X11 applications. Many visual-

intensive applications that display large-scale datasets or

many simultaneous datasets benefit from it.

ACKNOWLEDGEMENTS

We would like to thank all the people who have

contributed for building the scalable display system, its

software base and encouraging us in developing the

visualization applications.

REFERENCES

[1] Visualization Research with Large Displays,Bin

Wei, Claudio Silva, Eleftherios Koutsofios,

Shankar Krishnan, and Stephen North,IEEE

Computer Graphics and Applications, July/August

2000

[2] Software Environments for Cluster-based Display

Systems,Yuqun Chen, Han Chen, Douglas W.

Clark, Zhiyan Liu, Grant Wallace, and Kai Li,

Proceedings of the 1st International Symposium

on Cluster Computing and the Grid, 2001

[3] Deep View: High-Resolution Reality, J. T.

Klosowski, P. D. Kirchner, J. Valuyeva, G.

Abram, C. J. Morris, R. H. Wolfe, and T.

Jackman, IEEE Computer Graphics and

Applications, May/June 2002.

[4] Chromium: A Stream Processing Framework for

Interactive Rendering on Clusters of Workstations

, Greg Humphreys, Mike Houston, Ren Ng,

Randall Frank, Sean Ahern, Peter Kirchner, and

James T. Klosowski, Computer Graphics

SIGGRAPH 2002 Proceedings

[5] A Sorting Classification of Parallel Rendering, S

Molnar, Michael Cox, David Ellsworth, Henry

Funchs, IEEE Computer Graphics and

Applications, 1994.

[6] http://dmx.sourceforge.net/

[7] http://www.collabcad.com/

[8] http://public.kitware.com/VTK/

[9] http://blockbuster.sourceforge.net/

