
Commissioning Procedures and Software for the CMS Strip Tracker

<u>R.Bainbridge</u>, G.Bruno, F.Drouhin, J.Fulcher, L.Mirabito, M.Wingham

- Strip tracker readout system
- Overview of commissioning procedures
- Strip tracker DAQ software (within XDAQ and CMSSW)
- Status, results, future work
- Conclusions

CMS strip tracker readout system

- Strip tracker is unprecedented in size and complexity
 - Active area >200 m²
 - 15k readout modules
 - ~10 million channels
- Control system
 - Distributes clock, trigger and slow control (configuration)
 - Based on FECs and CCU "rings"
- Readout system
 - APV25 front-end readout chip
 - Analogue optical link system
 - Off-detector FED VME board

Front-end

Off-detector

Commissioning the strip tracker

- What?
 - Commissioning brings the detector into an operational state suitable for physics and comprises several tasks that do one of the following:
 - Optimize the *configurations* of all hardware components
 - **Synchronize** the system, both internally and to LHC collisions
 - Performs low-level *calibrations* for the readout system
- How?
 - Strip tracker DAQ provides dedicated DAQ loops (one per task)
 - Data analysis provide optimized HW configurations
 - Online configuration DB containing HW configurations is updated
- When?
 - Validation and tuning of the readout system during Start-Up
 - B/w fills just prior to physics (each task with varying frequency)

Some commissioning tasks...

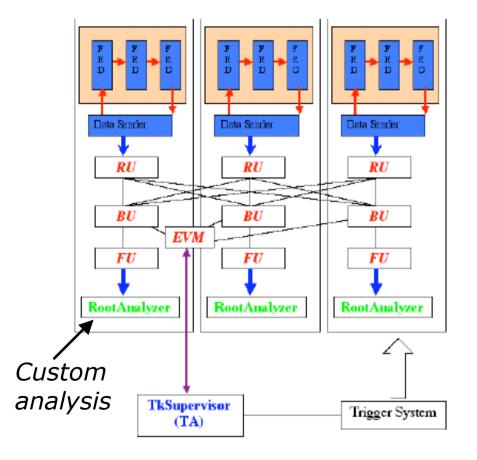
- Identify trigger partitions
 - Automated HW scans detect all front-end devices
 - Automatic detection of cabling connections b/w FE and BE (~38k fibers)
- Front-End APV25 Readout Chip
 - Pulse shape tuning
 - Tuning of gain and bias settings
- Off-detector Front-End Driver board
 - Sampling time of ADCs
 - Calibration constants for zero-suppression algorithms (and recon software)
- Optical link readout system
 - Gain matching across entire link system
 - Optimize use of dynamic range
- Synchronization of the strip tracker
 - Internal synch: accounts for signal propagation delays in control system
 - Global synchronization: to LHC collisions and other sub-detectors
 - Signal attenuation: ~4% / ns misalignment (nominal operating modes)

CHEP '06, Mumbai, 15th Feb

Imperial College

London

Strip tracker DAQ software

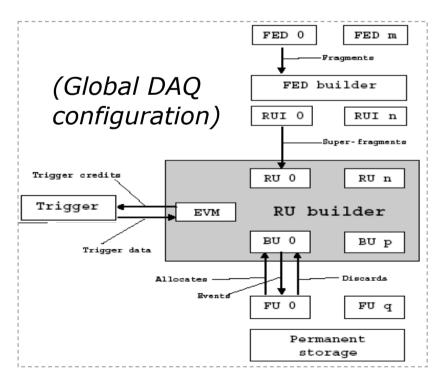

- Strip tracker DAQ fully integrated with XDAQ
 - XDAQ fwk tools: configuration of and communication b/w processes, event builders, shared memory management...
 - Allows DAQ processes to be distributed across multiple machines
- Hardware control/configuration provided by xdaqApplications
 - FecSupervisor: allows configuration of front-end ASICs
 - FedSupervisor: data capture and digitization
 - TriggerSupervisor: definition of (local) trigger patterns
 - DataSender: forwards event fragments to event builder
 - TrackerSupervisor: steering of data acquisition loops
- Root histogram-based analysis (RootAnalyzer)
 - Optimized hardware configurations are inferred from histograms NB: analysis modules are being ported to offline CMSSW

Strip tracker DAQ software

- Event building
 - Uses standard event builder tools provided by XDAQ (RU/BU/FU)
 - Custom "FED builder" (DataSender) interfaces with ReadoutUnits
 - FilterUnit process simply forwards event to RootAnalyzer
- Error handling and problem solving
 - Prototype framework exists: provides generic tools for handling and reporting errors to global "problem solver"
- Other aspects
 - Run Control
 - Detector Control System (environmental info, power, interlocks)

DAQ software: architecture

- Adopted solution (local DAQ)
 - Read data from FEDs via VME
 - Use local computing resources

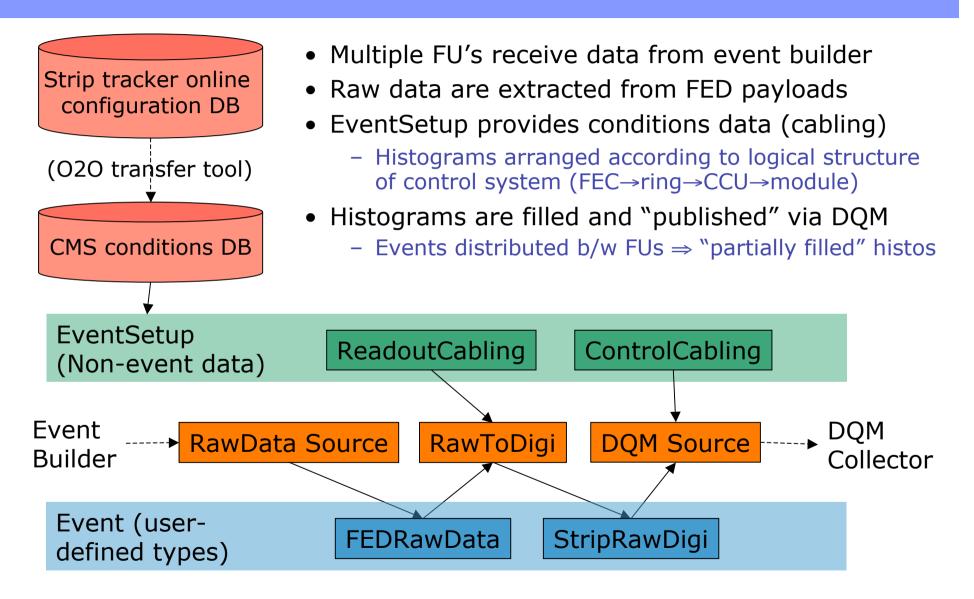


- Data acquisition using FEDs
 - 10 racks of 440 FEDs
 - 1 PC per crate (3 per rack)
 - Standard XDAQ event builder

Imperial College

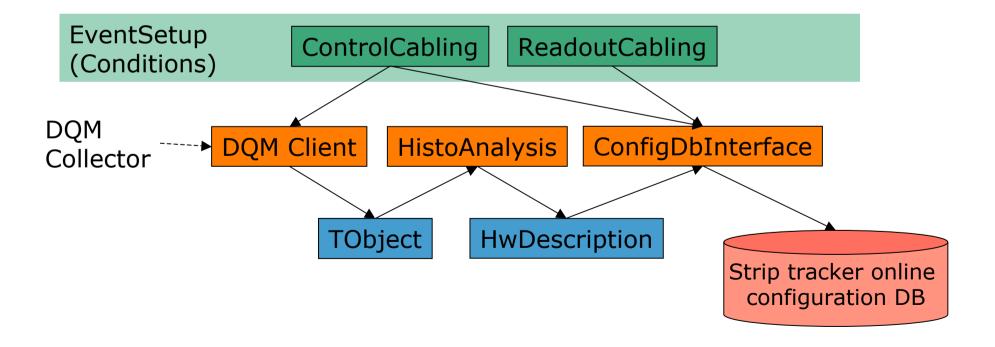
London

Crate PC's host RU/BU/FU



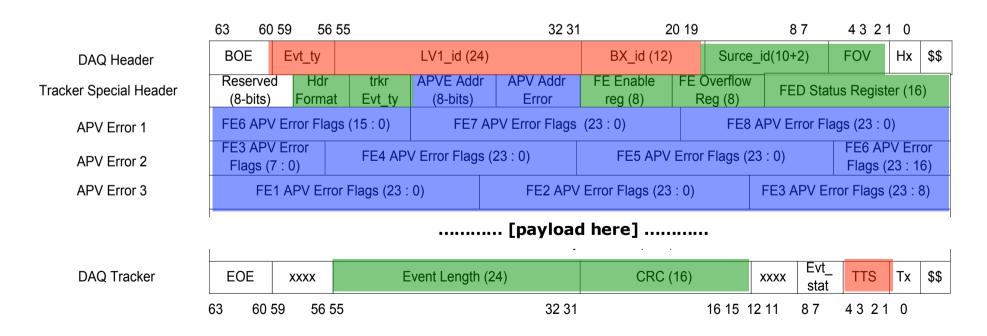
Motivations for using CMSSW

Imperial College London


- Custom analysis is currently being ported to offline fwk (CMSSW)
 - Existing XDAQ implementation is not easily scalable
 - System is reaching performance limits (can handle up to ~50 FEDs)
 - Urgent need for developments to handle final strip tracker system
- CMSSW provides many useful services / tools
 - Data Quality Monitoring framework
 - Conditions DB, geometry, low level reconstruction software
- Data Quality Monitoring (see talk of C.Leonidopoulos)
 - Remote clients can subscribe to histograms published by source(s)
 - "Collation" permits use of multiple sources and parallel processing
- Can use either local or global DAQ resources (if available)
 - Filter Farm has significant advantages over local DAQ in terms of:
 - trigger rates: O(kHz) via S-Link c.f. O(Hz) via VME
 - and processing power: hundreds c.f. tens of PCs

Commissioning analysis in CMSSW London

Commissioning analysis in CMSSW London


- DQM client subscribes to commissioning histograms
 - Histograms from multiple sources made available via "DQM Collector"
- Client provides complete (merged) histograms to user
- Histogram analysis extracts hardware configuration parameters
- Parameters are encoded within xml descriptions and uploaded to DB

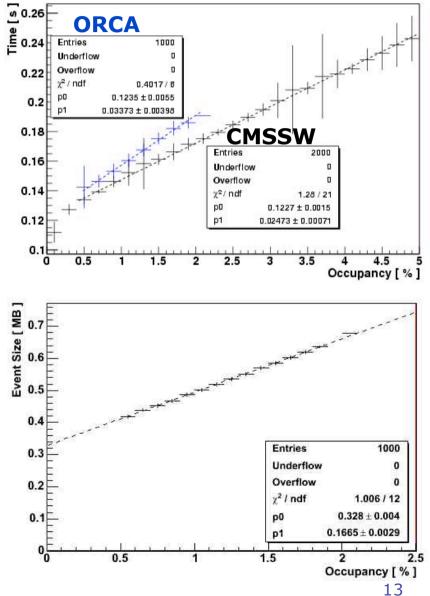
Monitoring of readout system

- Can monitor operational state of readout system during physics
 - FED buffer contains (limited) information on operational state of hardware

Event / trigger info: trigger type and id, BX id APV25 readout chip: logic errors, synchronization Front-end Driver: buffer lengths, buffer occupancies, throttle status

Imperial College

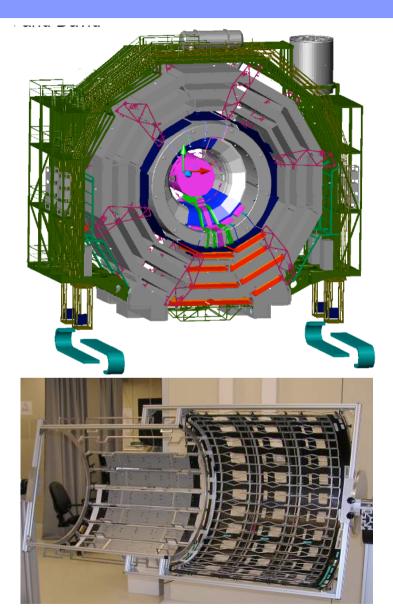
London


Development status

- Strip tracker DAQ software within XDAQ
 - Mature and stable system, used by strip tracker integration centres
 - Commissioning procedures established and well understood
 - Latest development: full integration with configuration database
 - Now optimizing performances (HW configuration, DB access)
 - Need to integrate final trigger and throttle systems
 - Need to interface with Run Control and Problem Solver
- Distributed analysis within CMSSW
 - Complete prototype exists within old ORCA framework
 - First time within tracker collaboration using final readout system and full (local) DAQ chain with FU-based online analysis
 - Port to CMSSW is underway
 - Expect to have complete prototype in time for Cosmic Challenge

Some results: raw data unpacking London

- Unpacking is first step in reconstruction
 - Digis created from FED payloads
 - Use cabling map to assign to DetId
- Pertinent results
 - Generate samples of FED buffers containing hit info (from sim events)
 - Samples reflect full strip tracker
 - FEDs: nominal zero-suppressed mode
 - Analysis run on 2 GHz machine
 - For tracker average of 1.2% occ:
 - Unpacking time: 140 ms / ev
 - Event size: 496 kB
 - Root compression factor: 1.7
- Consequences for HLT
 - HLT decision within 300 ms / ev (1 GHz)
 - Unpacking presently takes full quota
 - Strong argument for regional reconstruction and unpacking-on-demand



Future milestones

Imperial College London

- "Slice" tests in CMS Electronic Integration Centre (bldg 904)
 - Acts as development centre
 - Tests already underway
- Magnet Test / Cosmic challenge
 - Tracker contribution: 200 modules
 - Commissioning and DAQ tests
 - Timescale: April/May
- "25% tests" in Tracker Assembly Hall
 - Commissioning of final tracker partitions prior to installation
 - Timescale: May onwards

Summary

- Commissioning procedures established and well understood
- Strip tracker DAQ software is mature and stable
 - System is being used by all strip tracker integration centres
- Port of analysis modules to CMSSW framework is underway
 - Provides distributed analysis and improved performances
 - Allows to use global DAQ resources (ie, filter farm)
- Expect to have final DAQ software architecture ready for Cosmic Challenge in spring 2006