
THE ATLAS SIMULATION: AN LHC CHALLENGE

A. Rimoldi (University of Pavia & INFN), A. Dell’ Acqua, M.V. Gallas, A. Di Simone (CERN,

Geneva Switzerland), J. Boudreau, V. Tsulaia (University of Pittsburg –USA), D. Costanzo

(University of Sheffield – UK)

Abstract
The simulation program for the ATLAS experiment at
CERN is currently in a full operational mode and
integrated into the ATLAS common analysis framework,
ATHENA. The OO approach, based on GEANT4, and in
use during the DC2 data challenge has been interfaced
within ATHENA and to GEANT4 using the LCG
dictionaries and Python scripting. The robustness of the
application was proved during the DC2 data challenge.
The Python interface has added the flexibility, modularity
and interactivity that the simulation tool deserves to
implement in a common way different full ATLAS
simulation setups, test beams and cosmic ray
applications. Generation, simulation and digitization steps
were exercised for performance and robustness tests. The
comparison with real data has been possible in the context
of the ATLAS Combined Test Beam (2004) and ongoing
cosmic ray studies.

INTRODUCTION

ATLAS is a general-purpose detector for studies of

fundamental particle properties presently in assembly

phase and on its way to be operational in the LHC tunnel

at the CERN laboratory in Geneva (Switzerland) after

about 15 Years of preparation, development and

construction.

34 countries, 152 different Institutions and about 1800

scientific authors contributed along this time making its

offline software being handled by a common framework

so that all the different phases (generation, simulation,

digitization, reconstruction and physics analysis) are

approached and handled in the same way.

G4ATLAS: THE SIMULATION

APPLICATION

The common framework for event processing

(ATHENA) is the place where to run applications (ref [1])

in ATLAS.

An application is a set of services and algorithms

assembled and configured at runtime, steered using

jobOption scripts written in Python language.

Python is an OO-scripting language which is simple

and intuitive, robust when used in interactive way, allows

introspection mechanisms so that any user can interrogate

the object about type and internals adding therefore

introspection and interactivity to the C++ layer.

The application used in ATLAS to setup the simulation

is named G4Atlas. It is the only application available and

supported by the experiment for simulation, it is written

entirely in C++, being a full featured OO GEANT4

simulation suite based on dynamic loading and action on

demand, so that all user requested functionality is added

using plug-in modules. The Python application to setup

the appropriate conditions to run the simulation is named

PyG4Atlas and its role is to add flexibility for configuring

the different setups, interactivity for settings at runtime

and introspection.

With these tools we are now able to handle daily user

requests and different geometry configurations that could

be set at runtime.

The resulting robustness was proved with negligible

failures in many productions on the GRID since now.

Table 1 shows the present amount of data simulated in big

productions since 2004.

The different setups implemented (ref. [2]) are handled

similarly:

• full ATLAS Simulation

• cosmic-ray setups

• combined test beams and standalone test beams.

Table 1: ATLAS event productions

Year Millions

of Events

Production Type

(full simulation)

2004 12 Large scale production (DC2)

2005 4 Combined Test Beam for

performance studies

2005 8.6 Latest ATLAS workshop

2006 just started New test production

Consistency and validation effort is kept throughout all

the applications so that the user can switch among

applications with minimal effort. The non-ideal detector

description is in progress to describe the geometry for

detector as installed, to introduce the inavoidable

misalignements, material services, etc. In addition to that

algorithms and tests tools are in place (e.g. G4AtlasTest

application) to access the detector “hits”, to perform

material scans and to allow computations of radiation and

interaction lengths along a selected slice of the detector.

 These tools are useful to test the correctness of the

application as shown for the sample histograms obtained

using simulated hits from full 550 Z -> ee events. Fig. 1

shows in a plane R Z (in mm) the hit distribution in the

Inner Detector. Fig.2 shows the middle compartment hit

map in the Electromagnetic Barrel LAr Calorimeter,

while the detector thickness for an slice < 0.5 as a

function of R (cm) is shown in Fig.3.

Figure 1: Hit distribution for Z->ee events in the Inner

detector in a R Z plane. Units are mm, horizontal axis

Z(mm), vertical axis R(mm)

Figure 2: LAr barrel calorimeter hit map -middle

compartment (distribution, | | < 2, all).

Fig.3: detector thickness X0(%) for <0.5 vs R(cm)

ATLAS DETECTOR DESCRIPTION

The description of the complex geometry of ATLAS is

decoupled from the simulation framework (G4Atlas) and

two hierarchical trees are present in memory at the same

time (“GeoModel” and “Geant4). GeoModel provides a

transient geometry representation built from primary

numbers and alignment constants (Fig.4). The database

solution adopted is Oracle and versioning is in place.

Fig.4 – 3D view of the simulated ATLAS detector

As a consequence of that the simulation, digitization

and reconstruction applications are all using the same

geometry built at runtime.

The GeoModel description is optimized for a large

numbers of volumes (order of few x 10
6
) with extensive

use of parameterized volumes solutions. At the

initialization phase this geometry is translated into the

GEANT4 geometry and placed into resizeable and

moveable GEANT4 envelopes. Despite all major

optimization the total amount of memory required is

exceeding today 90 MB. The single contributions from

the different detectors are shown in Table 2.

Table 2: breakdown of ATLAS memory allocation at

runtime for the different subdetectors (MB)

Subdetector type Memory

consumption (MB)

Pixel 5.6

SCT 9.1

TRT 3.1

Inner Detector material 1.0

LAr 54.4

Tile 1.1

Muon System 21.3

GeoModel is also used for the Combined Test Beam
description (2004 setup). From 2005 onwards, since the
past productions were carried out using ideal detectors
with nominal positions, the new productions will include
a revised description of the detector “as installed”. All
information about deformation will be imported into
GeoModel with time variation associated to the run
number information.

JOB CONTROL

The ATLAS offline software is handled by the ATLAS
ATHENA-based framework. This framework uses the
Python language as a front-end language to the final
users. JobOption files handle jobs via Python scripts
configuring input/output, setting configurations and
algorithms to run.
Since GEANT4 has no native interface to Python,
simulation configurations are passed to GEANT4 through
specific command lines.
Users control the application through sets of macro-files:
these files indeed are easily diverging in number in a
complex application as ATLAS, giving problems of
maintenance on the long time life of the experiment.
To avoid these problems a Python layer was recently
added and developed in order to allow the user for a direct
control of simulation from the ATHENA prompt at
runtime. The Python interface application in ATLAS
(PyG4Atlas) provides enormous flexibility for
configuring and maintain different setups, improving
usability by adding interactivity and introspection.
PyG4Atlas is a Python module that uses the PyLCGDict
binding to the LCG C++ dictionaries.
As a consequence of this development in the Python
environment all macro-files are dropped and substituted
by two new classes (G4AtlasControl and
G4AtlasInterface) with both public interfaces exported to
Python with the result of guaranteeing all functionality
and availability of all GEANT4 commands.
G4AtlasApps uses the created dictionaries as well as
additional ATLAS or external dictionaries.

The Python G4AtlasInterface
LCG dictionary exports the user interface of the G4Atlas
building blocks and needed G4Commands. A thin Python
layer reproduces the G4Atlas blocks and the user can
access the simulation engine profiting from the
introspection and being able to customize it. PyG4Atlas
always selectively import Python modules, libraries and
dictionaries depending on the user requirements.

G4ATLAS APPLICATIONS

The simulation framework itself offers a set of pre-
configured simulation applications (full ATLAS
simulation, Combined test beam, cosmic ray setups and
old standalone test-beams). For each application several
layouts are available so that sub-detector specific studies

and user customizations can be easily achieved from the
pre-configured applications. These applications are
exercised daily through automatic nightly tests. The
feedback from users as well as improvements and new
features are all included in the preconfigured applications
and they are maintained centrally for the community.

Example 1 – Cosmic Ray simulation
During 2006 priority is put in ATLAS in the cosmic ray
data. Full support for the cosmic ray simulation is in
place, from the description of the experimental area (rock
overburden and surface buildings as well) to primary
cosmics using a dedicated CosmicGenerator able to
produce cosmic muons.
Each detector envelope is used as a scoring layer so that
particles at its entrance are recorded. The more external
envelope (Muon System) saves the particles propagated
through the rock overburden before entering the ATLAS
detector so that at the next time the simulation could be
restarted from that point.
The ATLAS cavern description, with shafts and muon
system , is completely described by the simulation
application.

Fig.5: 3D view of the ATLAS “cavern” setup. In red the
muon system positioned inside the ATLAS cavern

Example 2 – Combined Test Beam
The Combined test Beam environment is a big and natural
source for performance studies and physics validation at
LHC (Fig.6). It has been completely simulated with all
active and passive components in place.
The simulation infrastructure deals with all the following
different configurations:

• Combined mode
• Photon beams
• Material studies
• scans
• Calibration
• Ancillary detectors

Fig.6: 3D view of the simulated ATLAS Combined Test
Beam Setup. In the picture all detector components are
described.
In the data taking period (24 weeks in 2004) the layout
had frequent and sudden evolutions: simulation of these
different and time-dependent layouts was handled by
specifying the run number when needed a particular
layout version. Single particle generator was used in most
cases while Hijing generator was used to speed-up
material studies (jet and hadronic processes).
The total data available after the data-taking period is
90Mevents (4.5 TB) and 22Mevents in combined mode.
With simulation we produced 4 M events (electrons pions
and muons) in a momentum range from 1 to 350 GeV,
GRID facilities were extensively used through production
of 200 validated runs.

VALIDATION

This process is parallel to the simulation development.
The aim of validation is to spot as soon as possible any
non-optimal performance or internal inconsistency or
even inaccurate description of the detectors or physical
processes.

Fig.7 - total memory allocation vs. ATHENA release
number (last Year 2005)

Figure 7 shows the memory consumption at runtime
(MB) as a function of the ATHENA release number
(2005/2006). In the histogram is shown the total amount
of memory needed to run the simulation (about 550 MB)
with the breakdown of the contributions from GeoModel,
Geant4 itself and for the module-loading phase.
The overall approach for validation is threefold:

• Continuous measurement of the performance in
terms of the CPU time and memory
consumption.

• Comparisons with real data from old standalone
test beams for the different subdetectors, ATLAS
combined testbeam and cosmic ray tests.

• Physics performance studies by reconstruction of
full physical events.

CPU time per event and memory consumption at runtime
is daily monitored. Detailed measurements of these
quantities in the case of single particle and for full physics
events are performed in each new release (ref [3] and ref
[4]).

CONCLUSIONS

G4Atlas is the GEANT4-based simulation framework of
the ATLAS experiment. It has been successfully and
largely used in several massive GRID productions. In this
process performance of the Geant4 simulation is
systematically monitored, memory usage and normalized
CPU time per event are measured for different event
types. All performance results are coming as soon as a
new release is distributed after a fast phase of automatic
testing for pre-validation purposes. The crashing rate
resulted to be set around 1/10000 events.
The detector geometry is described by GeoModel and
automatically translated to GEANT4. The detector
description is being described according to reality
(detector as installed and misalignement). PyG4Atlas
interface provides the flexibility and configurability
required for the full ATLAS and test beam setups
(maintenance and usability were achieved).
PyLCGAtlas uses the LCGDictionaries through
PyLCGDict Python binding to connect Python to the C++
layers.
The data from the combined test beam is a good source
for the study of detector performance and GEANT4
physics validation.
The long-term success will be measured by the user-
friendliness and performance of the ATLAS simulation
both in large-scale coordinated data challenges and on the
desktop.
There is a lot more that will go into this program over the
course of its very long life. A user community of about
2000 people will soon make this one of the most
scrutinized computer programs in HEP checked with real-
data in every corner of the phase space.
Optimization will play an important role in the next future
and in this direction our next major development efforts
are concentrated.

ACKNOWLEDGEMENTS

I wish to thank all my colleagues of the ATLAS

Simulation Core Team: I presented this work on their

behalf. A particular thank is also due to the developers in

the subdetector groups for the constant improvement of

the quality of their implementation and to the Geant4 and

LCG people for the continuous help in the phase of tuning

of this complete tool to perform the ATLAS detector

simulation.

REFERENCES

[1] Athena framework:

http://atlas.web.cern.ch/Atlas/GROUPS/SOFTWARE/OO/architecture/G

eneral/Documentation/AthenaDeveloperGuide-8.0.0-draft.pdf.

[2] ATL-SOFT-2004-006 . The Simulation of the ATLAS

EXperiment: present Status and Outlook. by:Rimoldi, A;

Dell'Acqua, A; Gallas, M; Nairz, A; Boudreau, J;

Tsulaia, V; Costanzo, D;; Geneva : CERN, 15 Nov 2004

[3] ATL-SOFT-PUB-2005-004, “Validation of the

GEANT4-Based Full Simulation Program for the ATLAS

Detector” by D. Costanzo, A. Dell'Acqua, M. Gallas,

A.Nairz, N. Benekos, A. Rimoldi, J. Boudreau, V.

Tsulaia

[4] Simulation validation page:

http://atlas-computing.web.cern.ch/atlas-computing/

packages/simulation/geant4/validation/Validation.html

