
AliEVE – ALICE Event Visualization Environment

M. Tadel, A. Mrak-Tadel, CERN, Switzerland

Abstract

ALICE Event Visualization Environment (AliEVE) is
a general framework for visualization of detector geom-
etry and event-related data being developed for the AL-
ICE experiment. Its design is dominated by a large raw
event size (80 MByte) and an even larger footprint of a
full simulation–reconstruction pass (1.5 TByte). The main
components of the framework on the application side are
facilities for data and task-management. The presentation
layer consists of GUI and visualization elements. Appli-
cation core is minimal, providing access to registered data
and hooks for execution of specific tasks. CINT scripts are
used to steer data extraction and build-up of GUI elements.
AliEVE introduces the concept of experiment software in-
dependent data representations attained via preprocessing
of the data and canonization of its format.

INTRODUCTION

In high-energy physics experiments it is customary to
use the termevent-displayto refer to a program used for
visualization of detector geometry and event data. Such
programs provide different levels of functionality and ex-
periments usually develop several specialized applications.

The areas of event-display usage range from on-line
monitoring to physics analysis and hypothesis testing. Try-
ing to pull together all the requirements, one could say that
event-display programs of a given experiment providevi-
sualization ofandgraphical user interface(GUI) to detec-
tor geometry and event-related data including simulation
records (kinematics, hits, digits), raw data, reconstructed
objects (clusters, tracks, kinks, V0’s, primary vertex) and
physics objects (b-tags, Z0, H-candidates, etc). Addition-
ally, interface to experiment’s software framework, espe-
cially to reconstruction & analysis algorithms, is manda-
tory.

The event-display programs differ in their purpose as
well and are used by people with very different back-
grounds. Experts use them for visual debugging of mostly
everything that was mentioned above, from electronics
read-out and detector functioning to software algorithms.
Visualization also aids the development of reconstruction
and analysis algorithms as it is allows better understand-
ing of actual problems and performances. Non-experts
use event-displays to acquaint themselves with the detec-
tor, event structure and reconstruction algorithms. Finally,
displays are used for presentations, demonstrations and for
outreach activities where a complex problem needs to be

introduced to a wider audience.

Apparently, there are many elements and many purposes
to visualization programs in a HEP experiment. With the
limited resources available for the development it is prac-
tically impossible to satisfy all the requirements with a
single application. To avoid multiple implementations of
the same functionality and to provide the elements needed
by specific end-user applications we propose a common
framework, calledALICE Event Visualization Environment
(AliEVE).

AliROOT[1], the offline framework of the ALICE ex-
periment, is firmly based on the ROOT data-analysis
framework[2]. To benefit from the large code-base and
user-community of the ROOT project it is natural to split
the development of AliEVE into purely ROOT-based part
and ALICE specific part.

ALICE is the dedicated heavy-ion experiment of the
LHC. It will operate in the Pb–Pb@5.5 TeV/nucleon mode
for one month per year. In this regime, the compressed
raw-data size is 80 MB per event, about 50-times the event-
size of other LHC experiments. A central Pb–Pb event has
60.000 primary tracks and the data produced by a full sim-
ulation/reconstruction pass amounts to 1.5 GByte. This in-
cludes, for example, 600 k simulated particles (1.5 M actu-
ally tracked), 150 M TPC hits, 3.2 M TPC clusters, 1.6 M
TRD clusters and 16 k reconstructed tracks.

The data-size clearly poses technical problems related
to reading speed and memory consumption. However, the
really challenging part is to provide an extensible selection
mechanism allowing visualization of relevant portion of the
data. For example, drawing all the tracks and clusters in
an event, while technically feasible with interactive refresh
rates, results in images of little practical use but for color
plates or outreach web-pages.

In the following the design of AliEVE is presented. As
the implementation is still in the mid-development phase
the article closes with the report on the current status of the
project.

DESIGN OF ALIEVE

In this section we present the basic components of
AliEVE and its application core. For each element we dis-
cuss what is provided by ROOT, what can be provided by
a general framework and what needs to be provided by the
ALICE specific codes.



Basic components

The goal of common components and paradigms is to
provide ready to use solutions and to serve as a good code-
base for concrete, specific implementations. ROOT already
provides many components. Some of them can be used
directly others can be implemented by simple extension of
available functionality.

Data management. Event-displays load data from ex-
ternal sources and store it in memory in an internal repre-
sentation, usually chosen so that it can be displayed effi-
ciently. To allow interaction with the loaded data, modify
its state or remove it from the application, it must be stored
in a well defined manner. ROOT container classes and the
TFolder class provide an adequate solution.

Based on its validity, one can divide the data into two cat-
egories: global data (detector geometry, coordinate grids,
text markup) and event data. It is a frequent use case to it-
erate through a series of events or to have two events loaded
simultaneously for comparison. It is beneficial to introduce
concepts ofdata-storeanddata-source: a data-store con-
tains the data that comes from a single data-source and al-
lows its management in a coherent way. Directory structure
with arbitrary depth is used.

The data-management is thus reduced to handling of a
set of data-stores. Usually there is one global data-store
holding the detector geometry and one data-store for each
event that has been loaded. During iteration through an
event sequence, one simply drops the data-store belonging
to the old event, instantiates a new one and populates it with
data. The global store containing the geometry is left intact
by the operation.

Task management. During visualization, there are
many common tasks that require non-negligible usage of
system resources, including loading of data-sets, running
selections on data and converting the data between differ-
ent representations. The tasks can be limited by their input
(e.g. retrieving data via the network), CPU (transforming a
large data-set to a different coordinate system) or a combi-
nation of the two (running selection on a large ROOT tree).

To support execution of sequential and parallel tasks we
introduce the concept of atask queue. Tasks in one task
queue need to be carried out sequentially while several
task queues can run in parallel. This introduces the need
for thread-support and thread-synchronization devices like
mutexes, read-write locks and condition variables. ROOT
provides an OS independent thread API.

Relation of tasks to data-sources and data-storages must
be well defined in order to make proper processing possi-
ble. In general, one associates a task with a given data-
source and locks it for the duration of execution. During
the finalization of the task, the data-source lock is released,
the data-store is locked and the results are registered into
the application.

GUI elements. ROOT provides a rather complete set
of OS independent GUI classes derived from Win’98
toolkit. A set of medium-level widgets, like canvas,
browser and GL viewer, is likewise available and can be
sub-classed for more specific uses. It is of great importance
that GUI classes are accessible via the CINT interpreter as
this allows on the-fly modification of existing widget hier-
archies.

Additionally, ROOT introduces the concept ofobject ed-
itor: for each class that requires user interaction one pro-
vides a corresponding editor class that exposes the object
interface via a hand-written GUI. As application and vi-
sualization elements are objects anyway this provides a
convenient service for fast construction of complex control
systems.

Nevertheless there is still an obvious need for medium-
level GUI elements that operate on a set of objects. They
provide a gateway to a higher level functionality that can
not be exposed via a simple object-oriented interface. For
example, one can envision a track-selection GUI contain-
ing a set of cuts that retrieves matching tracks from a data-
source and replaces the contents of a given data-store by
the results. The framework can provide management of
such GUIs and offer them to a user as a list of available
options.

High-level composite UIs can be constructed to pro-
vide frequently used GUI layouts. We have implemented
a top-level application window including a graphical view
and data-store browser with an object-editor. Additional
medium-level UIs can be spawned as floating windows.
This serves both as a minimal, ready-to-use application for
simple tasks and as a base for further extension. In the fu-
ture we will try to modularize it and provide a more generic
framework for high-level GUI composition.

3D graphics elements. ROOT supports 3D visualiza-
tion in several modes, including rendering of objects via
OpenGL [3]. There is excellent support for rendering of
detector geometries in variety of styles and a rudimentary
interface for display of poly-markers and poly-lines.

For legacy reasons, the communication between 3D
viewer and the application is non-transparent and requires
creation of intermediate objects. To overcome this limita-
tion, we introduced a new mechanism for direct rendering
via OpenGL. To endow a class with this capabilities the
programmer must provide a GL-renderer class that inspects
the original object and makes GL calls directly.

The prepared visualization atoms include sets of colored
points, quads and boxes, a track, a list of tracks and a sim-
ple interface for displaying textures. Markup objects (ar-
rows, rulers, labels) and a base-class for raw-data visualiza-
tion for detectors with a regular segmentation (e.g. silicon
detectors and calorimeters) are planned. From these ele-
ments composite objects for visualization of reconstructed
physics objects can be build.

Picking is supported by ROOT on the object level but it
will have to be extended for finer grained interaction with



the object contents. For example, given a set of quads rep-
resenting silicon-detector digits for a single module (one
object), we would like to identify an individual digit when
it is clicked upon. This will be implemented by adding
a second-level picking procedure with special rendering
function provided by the object itself for disambiguation.

Application core

The central entity of AliEVE is the application manager.
It is simply a directory of components currently present
with the functionality to instantiate and delete them and
to expose them to other elements of the application and to
the user. Data-stores, data-sources, task-queues and GUI
fragments are therefore handled internally in a symmetric
manner. But the interface to access them and start opera-
tions on them, differ from case to case.

CINT scripts are used for initial application bootstrap-
ping. First a meta-level scripts are called to load the global
data and to initialize the event source. These are regis-
tered into the application manager and therefrom available
to specific scripts that are called afterward to load the re-
quired parts of an event. A general structure of such a script
is:

1. obtain event handle from the manager

2. perform data extraction and instantiate visualization
object(s), fill them and set-up their properties

3. register the visualization object to the manager

In a similar spirit the GUI fragments can be instantiated
and registered. Thus all components of the application are
instantiated from a set of loosely coupled scripts.

The scripts can be invoked in basically arbitrary combi-
nations and top-level covering scripts can take care of more
complex setups. Additionally, a GUI front-end for running
scripts can be easily constructed and offer the user a set of
major visualization options prepared by the experts.

Visualziation Summary Data

Before the decision to use CINT scripting extensively
was made, we tried to obtain high-degree of code reuse
by introducing the concept ofvisualization summary data
(VSD). The idea was to use a small set of basic classes and
repack ALICE event data into canonic trees for kinemat-
ics, hits, clusters, reconstructed tracks, V0s and kinks. In
the process all data was converted to global coordinates,
containers were flattened and summary for each track label
was made. The good part was that we were able to reduce
the data volume to 20% and use a simple set of tree queries
to select the data from all the detectors. Tree selections
are completely general as one can type any selection for-
mula and also perform object post-processing by redirect-
ing the selection into a list. Additionally, the visualization
was completely independent of AliROOT. The bad part was
the loss of references to original objects.

Even though the concept was dropped as the mainline so-
lution it still has a strong appeal as one is often interested in
visualizing a rather specific sub-set of event data. Further-
more, ability to visualize the data without the experiment
framework has two important uses. First, it can be used on
workstations/laptops where the experiment software is not
or can not be (Windows, for most experiments) installed.
Second, a specific VSD can be prepared for educational or
outreach purposes and used by universities for lab-work by
the students.

The support for creation and reading of VSDs is still
present in AliEVE, together with a set of basic classes
needed to represent standard objects in HEP. The VSD con-
cept further benefits from usage of CINT scripts, especially
since they can be packed into a ROOT file together with the
data itself and shipped to other people for further usage or
inspection of certain occurrence. We expect that VSD us-
age will become important as more users will start working
on specific problems.

DEVELOPMENT STATUS

Prototype of AliEVE was constructed in the first half
of 2005. It was implemented in the GLED framework
[4] which provides object-collection management, multi-
threaded method execution, auto-generated object-GUI and
direct access to OpenGL (not present in ROOT at that
time). With this functionality we were able to explore
a wide range of algorithms in a rapid development cy-
cle. VSDs were used for all but the raw-data visualization.
ROOT’s tree-queries proved to be an efficient and exten-
sible selection mechanism. Many experiments were made
with open GL and we have established that visualization of
complete Pb-Pb events is feasible with standard graphics
hardware if one uses all the available optimizations. The
GLED prototype is still used for production high-resolution
pictures and for outreach movies.

Minimal implementation within pure ROOT was fin-
ished in the beginning of 2006 and released to users by the
end of April. The implementation of task queues is missing
and GL interactivity is rudimentary.

Fig.1 shows a data-store browser filled with geometry
and visualization objects. On the right side the object editor
is presented, showing options for a track-list object (high-
lighted). Here one can set visualization parameters which
apply to a whole track collection. Overloading of contain-
ers is used in many places to provide an interface to com-
mon properties of contained objects. GL rendering of the
scene is shown in Fig.2.

Second GUI layout with interface to rendering of TPC
raw-data is presented in Fig.3. TheTPCSegment object con-
tains the displayed data as well as the visualization param-
eters that can be changed dynamically in the object editor.
The GL rendering class supports rendering via textures: in
this case the whole TPC sector is rendered as three textured
rectangles and thus provides a large speed improvement.

A major release with all the described functionality is



Figure 1: Data-store browser and object editor.

Figure 2: GL rendering of the scene from Fig.1

planned for September.

CONCLUSION

AliEVE framework provides the implementation of
common visualization, GUI and application elements re-
quired by the ALICE experiment. Close integration with
the ROOT framework and extensive reliance on CINT
scripting minimizes application infrastructure and makes
it easier to understand for developers and users alike. The
GUI support follows the object-editor paradigm of ROOT
for basic interface and build from it in a progressive,
component-oriented manner toward medium and top-level
elements.

Close integration with the ROOT framework and the
concept of visualization summary data allows visualization
to be decoupled from the experiment software framework
and carried out on all platforms supported by ROOT. The
preprocessing needed for data-conversion can also be used
to reduce the data volume, if not all the data is required,

Figure 3: TPC raw-data visualization.

and to extend it with user-provided extensions.

ACKNOWLEDGEMENTS

Authors would like to thank Reńe Brun and Federico
Carminati for their guidance.

REFERENCES

[1] L. Betev, R. Brun, F. Carminati, P. Hristov, A. Morsch,
F. , K. Safarik,The ALICE Offline framework, CHEP-2006,
Mumbai, India.

[2] R. Brun and F. Rademakers,ROOT – An Object Oriented
Data Analysis Framework, Proceedings AIHENP’96 Work-
shop, Lausanne, Sep. 1996, Nucl. Inst. & Meth. in Phys. Res.
A 389 (1997) 81-86. See alsohttp://root.cern.ch/.

[3] O. Couet, R. Maunder, T. Pocheptsov, R. Brun,ROOT 3D
graphics, CHEP-2006, Mumbai, India.

[4] M. Tadel, GLED – an Implementation of a Hierarchic Server–
Client Model, Applied parallel and distributed computing (ed:
Y.Pan, L.T.Yang), Vol.16, Nova Science Publishers, 2005.
See alsohttp://www.gled.org/


