

New features in ROOT geometrical modeller for representing non-ideal geometries

René **Brun**, Federico **Carminati**, Andrei **Gheata**, Mihaela **Gheata** CHEP'06, 13-17 Feb. 2006

Outline

- Ideal vs. real detector
- Misalignment in TGeo
- How (not) to use it
- Deformations scaled shapes
- Assemblies of volumes
- Conclusions

Ideal vs. real detector

- Detectors have generally nice symmetric structures on paper
 - Geometry description and its implementation to specific geometry models used for simulation/reconstruction follows-up
 - In practice, even tracking algorithms and other parts of the code are extensively using assumptions on symmetries
- When building the detector and putting it in place, nothing is as nice as on paper anymore
 - Not taking this into account is non-affordable
 - Degradation of resolution/efficiency (in the best case)
 - No clear recipes to solve the problem (just workarounds)

Ideal vs. real detector (2)

- What people usually do:
 - Simplified geometry in the reconstruction framework
 - Start with survey information, then try to "re-align" data in order to minimize track fit residuals, then patch this geometry with the resulting information
- Eventually simulation ≠ reconstruction geometry
 - The difference between the 2 become un-maintainable
 - Simulating the misalignment effects become "bricolage" in the best case – people really learn how to deal with this problem quite long after the first data taking
- Tools to deal with mis-aligned geometries practically not existing
 - Geometry problem => geometry tools

Two approaches

- Misalignment aware approach
 - Detector geometry aware of the objects that might move

Misalignment "on the fly"

- Describing a single object in the geometry
 - Fully qualified by a path

Caveats

CHEP'06 13-17 Feb. 2006 New features in ROOT geometrical modeller for representing non-ideal geometries

Scaled shapes

- Scaling shapes might be very useful when trying to represent small deformations in the geometry
 - The scaling transformation used to perform this is not propagated hierarchically to contained objects
 - In real life support structures do deform but what is connected to them just get displaced
 - How these displacements will look like after such deformation is a much complex task however.
- One can replace an existing shape with a scaled one during the misalignment with TGeo

Volume assemblies

- "Software" misalignment not always compatible with GEANT-like geometry
 - Containment architecture is the main problem
 - Something needed to allow misalignment but to preserve all benefits of containment (navigation speed)
- Assemblies are defined in *TGeo* as unions of several different volumes positioned with respect to a common local frame
 - An assembly is just a volume having no shape container
 - No medium/material needed: a point INSIDE the assembly is always in one of the components

Usage of assemblies

- Easy creation using TGeoVolume interface.
 - Same constrains as for volumes (no overlaps of components) except extrusion
- Very useful for defining complex structures where is hard to define a container made of basic shape
 - Nesting allowed
 - No navigation performance penalty
- - Description in relegie notes

Converting existing containers to assemblies

• Two stens: - Clone Asm eoVolume container) C Specular - Actual geometry er, Asm)

Overview

- ROOT geometrical modeller provides support for:
 - Misaligning an existing ideal geometry and using this directly for simulation.
 - Using the same geometry during simulation and reconstruction.
 - Transforming existing geometry containers into assemblies for avoiding possible overlaps during the misalignment procedure.
 - Recursively updating the misaligned objects during the same session when using residuals minimization procedures.
- No changes required in the geometry
 - Still, tracking algorithms should use geometrical information stored in TGeo
 - Misalignment awareness in the way geometry is modeled helps a lot in dealing with the problem
 - Leave some free space for the "movable parts"...
- Examples of usage of these features already exist ROOT tutorials:
 - \$ROOTSYS/tutorials/assembly.C
 - \$ROOTSYS/tutorials/geodemo.C