
Virtualisation for Grid-Computing

Marcus Hardt
Institute for Scientific Computing
Hermann-von-Helmholtz-Platz 1
76344 Eggenstein-Leopoldshafen

Germany
hardt@iwr.fzk.de

Abstract

One problem in distributed computing is bringing together
application developers and resource providers to ensure
that applications work well on the resources provided. A
layer of abstraction between resources and applications
provides new possibilities in designing Grid solutions.

This paper compares different virtualisation environ-
ments, among which are Xen (developed at the University
of Cambridge / UK) and User-Mode-Linux (a linux com-
munity effort). The differences in architecture and features
will be presented. The results of our intensive performance
measurements that have been carried out on all of these vir-
tualisation environments will be discussed.

Furthermore use cases that highlight solutions to typical
problems in distributed computing with particular emphasis
on Grid computing will be presented.

1 Introduction

Deployment of large-scale distributed applications in to-
days grid installatons is a very difficult business. This is due
to the large amount of parameters required to fully describe
a computing system. These parameters include the archi-
tecture, the choice of operating system, the chosen OS dis-
tribution and the version being used. Even the compile-time
settings used for creating certain libraries might be required
to describe a system. In some applications it was found that
even different settings for the compilation of the mathemat-
ical library libm can cause changes in the final results of
calculations. In consequence high energy physics (HEP)
experiments, such as D0 and CDF, have prepared certifica-
tion toolkits which have to be run on new resources before
they can be added to the experiments’ resource pool. These
certification toolkits cover the major problems that experi-
ment software typically encounters, including to ensure that

the experiment software will install properly on the remote
machine.

The easiest solution for this problem would be to install
well defined software on well defined hardware for all re-
sources in the Grid. This contradicts one of the key design
principles of the Grid, to support heterogeneous environ-
ments and is obviously not realistic. Furthermore this is un-
feasible in a fast-moving, global environment with dynam-
ics due to ongoing development. In the European projects
Data Grid (EDG) and CrossGrid (CG) this approach was
taken as far as the installed software is concerned, because
the main focus of both projects was the development of mid-
dleware and early adaptors’ application software. However,
this tied a considerable amount of manpower to system ad-
ministration tasks.

Another issue are the conflicts between system admin-
istrators, middleware and application developers. All use
their own systems to develop their applications. This means
that all own the systems they develop on, thus being able
to tweak them to their needs. This results in different, po-
tentially incompatible, configurations, resulting in incom-
patible assumptions being made on the resources where the
software will be used. In a Grid environment their appli-
cations are supposed to work on all kinds of resources ad-
ministered by a multitude of different administrators with
typically different policies and restrictions.

In other words, there is currently no common under-
standing of how each node for distributed computing should
be designed. A layer of abstraction, which gives each party
enough freedom, might solve this problem. This paper will
present an overview about different virtualisation environ-
ments and show a benchmark comparison.



2 Virtualisation Approaches

2.1 Z-Series

Virtualisation is most renown from IBM z-Series hard-
ware. This solution depends on the specific z-Series hard-
ware together with the specialised operating system. Al-
though many virtual linux systems can be booted on this
system, this kind of virtualisation is not referred to in this
paper.

2.2 User Mode Linux

User Mode Linux (UML) is an opensource solution for
linux-on-linux virtualisation. UML is essentially a kernel
port from the default x86-hardware to linux as a hardware.
The UML kernel is an executable just likels . It can be
run by any user. Parameters specify the disk image to use
or the IP address to assign. Although UML is a userland
tool it must be said that networking is only available after
interaction with administrative privileges in order to set up
the required network interfaces.

The virtualisation takes place at the device driver level.
For most of the native linux devices UML provides a virtual
device that can be used within the Virtual machine. This can
be thought of as passing on the native devices to the virtual
machines.

In order to support clustering a large number of similar
machines, UML supports a copy on write (cow) filesystem.
It consists of one master image file plus one per UML in-
stance that contains the changes against the master image
on a block level. Most probably newer will make use of the
transparent overlay filesystems, recently supported by the
linux kernel.

2.3 Xen

Xen [4] approaches to bring Virtualisation, as known
from Mainframes, to the Intel x86 Architecture. Other than
many known virtualisation systems the Xen Team did not
aim for full virtualisation. Instead, the approach of “par-
avirtualisation” was created.

While only a very limited amount of privileged calls has
to be virtualised in order to run more than one operating sys-
tem concurrently, paravirtualisation implies modifications
of the guest operating systems. Such modifications are usu-
ally limited to just a few thousand lines of code, compared
to the approximately 6 million lines of code of the Linux
kernel and thus do not represent a major change. Not only
a large amount of open operating systems was ported to run
on Xen. Also windows XP was modified by MS-Research
in order to run on Xen, but was never released as a product.

One design goal of Xen was to keep the application bi-
nary interface (ABI) unchanged. This means that applica-
tion binaries will run inside virtual machines without any
modifications. For architectural details see [1, 2].

The host system is usually referred to as Domain-0 or
dom0. This is a domain – or virtual machine – with the
special privilege of communicating with the new underly-
ing Xen layer. Domain-0 is also in charge of accessing the
hardware and providing virtualised interfaces to the guest
domains, which are called domUs. The domUs are the ac-
tual virtual machines. On todays computers their number
is mainly limited by the available resources, most often the
amount of RAM.

A set of userspace tools is provided for controlling the
virtual machines. This comprises the basic functions, like
creating and destroying virtual machines, connecting con-
soles to them as well as more advanced functions for stop-
ping/starting, saving and even migrating virtual machines
between different physical hosts. The filesystem for guest
systems can be placed into raw partitions, on a Logical Vol-
ume Manager (LVM) partition or simply inside a file. They
are made available via the virtual block device (VBD) driver
to the guest domain. Booting a system via NFS-root is pos-
sible as well.

2.3.1 Features

Xen can stop, resume and kill virtual machines, which im-
plements the various funcions of a PC’s powerbutton.

Furthermore, Xen allows to migrate domains to different
machines (on the same subnet while they are running. Net-
work connectionsstay activeduring the migration. In the
case of “Live migration”, no noticeable down-time can be
observed. First, all domain-specific data is copied. In the
next step, only changes between the “pre-copying” stage
and the actual migration are sent to the new host.

Unfortunately, we were only able to use migration in
small test installations. This is because the image file needs
to reside on shared network storage, so it does not have to
be migrated. Using NFS to share the images between hosts
was not possible because of a known issue of the Linux ker-
nel when using loop-back files over NFS. The Xen team
suggests using GNBD (Network Block Device) or i-SCSI
(SCSI over IP). Root-mounted NFS may as well be an op-
tion.

2.3.2 Issues

One issue of current Xen versions is the incompatibility
with the TLS implementation of most glibc distributions.
While Xen can use a slower compatibility mode if this im-
plementation is present, disabling TLS is suggested. Al-
though this is easily done by removing/lib/tls prob-
lems occur during system updates which will occasionally



bring back the tls libraries in updated versions. It must be
said that a xen-compatible version of these libraries is in
development.

Another issue is the disk-i/o performance delivered by
Xen. Older measurements observed, that some Xen ver-
sions showed a very fast throughput, when image-backed
rather than partition-backed. Newer Xen versions do not
perform well on image-backed installations. The Xen Team
suggests using LVM or partitions instead.

3 Commercial Product

The license of the commercial product we evaluated does
not allow to publish performance measurements. Since we
wanted to publish them we chose to keep the product name
secret.

The approach is totally different to the above. This sys-
tem is the only one that provides real virtualisation. Its own
MMU intercepts accesses to memory and redirects them ac-
cordingly. Virtual devices like ethernet or harddrive and
sound can be connected. In the case of sound and graph-
ics special drivers are required and provided.

4 Virtualisation Use Cases

4.1 gLite Installation course

As a part of the courses held at GridKa School 2005 [?] a
gLite intallation course was planned. It was required to train
up to 40 students in small groups of 3 people. The hardware
constraints of glite required 5 PCs per group plus a set of 5
machines for central services. In this sums up to 70 ma-
chines required for such a course. Experience from a sim-
ilar event that took place in the previous year showed that
this is generally not desirable – especially due to the fact
that physical access to the machines will be required in or-
der to install the basic operating system. For GridKa School
2004 this involved moving 70 PCs from the compute-center
into the office building and connecting all PCs to network,
power, keyboards and screens. – Obviously not a perfect
solution.

Essentially due to the lack of availalbe computers Xen
was investigated and proved to be a considerably good so-
lution due to several facts:

4.1.1 Direct access to virtual machines

Students can access the virtual machines from the host ma-
chines as if they are directly connected to a terminal. I.e.
Basic OS installation or network configuration can be done
without special cabling (i.e. serial consoles, console servers
or equivalent).

4.1.2 Consolidation of machines

The goal of an installation course is to understand how to
install the software rather than providing high performance
computing environments. Thus we integrated all the five
machines that required per group onto one physical ma-
chine. For this task host machines with only P-III 700Mhz
and 1GB RAM were entirely sufficient.

4.2 IT consolidation

A current trend in IT divisions is to use virtualisation in
order to consolidate services. Following this idea we have
virtualised our Grid environment.

Part of our duties within the EGEE project is to run train-
ings on grid middleware, in particular installation courses.
Very unfortunate for this type of course is the fact that the
EDG- based Grid middleware LCG-2.4 is designed to scale
from large to very large installations. Thus the installation
assumes one dedicated computer for each task, as described
above.

Although it is in principle possible to manually integrate
several nodes onto one, this is not foreseen by the installa-
tion procedures and thus requires a good inside knowledge
of the LCG software. Using Xen we installed one node
running three virtual machines, running the required cen-
tral services. For every group of students one node was set
up to run five virtual machines, each of which has to be con-
figured to run one of the LCG services as a course goal.

The hardware available for the courses were 16 dual
Xeon-700s with 1GB of RAM and 40GB harddrives. The
main constraint on the hardware is the memory, because
Xen does not support memory over-subscription. Accord-
ingly we chose to create swap files and pass them to Xen.
Together with the image file, that contains the whole file
system for use inside the virtual machine, the installation is
complete and requires less than 8GB of disk space.

We are currently working on using a very similar setup in
order to run a gLite (EDG-middleware successor) installa-
tion course. One problem here is that the students will need
physical access to the machines they are installing. The
main advantage in this scenario is that by using the virtu-
alisation environment, we can avoid to physically transport
the required 66 computers to the course location, because it
gives “virtual physical access” to the machine, i.e. full con-
trol over the virtual machines is available from inside the
physical host system, to which remote logins are enabled
already.

4.3 Using Windows Desktops

In our research center roughly 4000 PC are installed with
Windows for doing office kind of working. Summing up
office hours with respect to weekends and holidays turns



up that these PCs are only operated one third of their time,
thus two third of their time they could be added to the lo-
cal cluster. Unfortunately none of the windows OS flavours
supports the LHC grid middleware. However, virtualisation
tools exist that can be used to run a linux PC on top of win-
dows. The performance loss is at around 10% (as we will
show below), thus this appears feasible to do.

4.4 Whole image job submission

The work done on the installation course setup led us to
the conclusion that it should be possible to use this technol-
ogy in order to solve a more general problem in LCG based
– and probably many other – grid environments. We found
already, that it is possible to run all infrastructure services
inside virtual machines. This usecase works, if the work-
ernodes support Xen, but are not running inside a virtual
machine themselves.

This would allow application developers to use a virtual
machine inside which he develops his application. This vir-
tual machine can run any Linux distribution and can be as
customised and tuned as required by the developer. The un-
derlying image from which the virtual machine was booted
can be sent to any Grid node, where it is booted. The devel-
oper must take care that processing is started appropriately,
that the results are stored in a suitable place so that access
to it is ensured, once the job terminated. The developer can
utilise his favourite grid middleware to accomplish this.

The overhead introduced by sending around images con-
taining a whole Linux plus Grid middleware plus applica-
tion software distribution is less than one would expect at
first sight. This has several reasons. First of all, replica
services are widely deployed in their second and third gen-
eration. They allow to register a set of images to the Grid.
Resource brokerage systems are available that can decide to
start the computational jobs at a site where an appropriate
image is provided. Secondly, developers are expect to use
existing images and update the bits of software they devel-
oped inside that image rather than creating a new image for
every test they need to run. The main advantage is still that
they only develop on a homogeneous system.

4.5 Cluster Load Management

One more benefit of virtualisation using Xen is that it
allows to migrate images inside a cluster.

Today in HEP related environments, clusters are used in
the way that incoming jobs are sent to one workernode by
the batch system. The job stays there until it is finished.
Usually SMP machines are used as workernodes, resulting
in the usual load of two jobs per node. Typically there are
different jobs or different phases of jobs. These phases can

be differentiated into i/o intensive phases and CPU intensive
jobs.

When combining the migration functionality with appro-
priate monitoring, a flexible load management functionality
can be implemented. It would be designed to ensure that
complementary jobs (i/o bound vs. CPU bound) jobs share
one node. It is predictable that in this way the overall effi-
ciency of the cluster can be easily improved.

5 Performance

Most Performance measurements took place on the same
hardware, a Sun Fire V20 with 2GHz Opteron, 80GB SCSI
harddisk and 4GB of RAM. Only the User Mode Linux
(UML) benchmarks took place on an older P-III 700MHz
with 1GB of RAM and IDE disk. The performance mea-
sures shown for UML are the relative metrics to the plain
measurements on the P-III. All other measurements are rel-
ative to the Opteron.

In order to get a feeling for the different subsystems of
the hardware we ran a set of different benchmarks that stress
the different hardware subsystems.

All benchmarks were run 1-16 times at the same time
on the same hardware. For the virtual machines this means
that all the virtual machines were running the same bench-
mark at the same time. Especially for more than 5 virtual
machines running, there was a considerable effect that we
called load-inbalance. It results in some VMs finishing 4
benchmarks while others only finish 2 or don’t even finish
at all. This happens although we confirmed from the com-
mandline, that the benchmarks actually ran.

The commercial product did not succeed to easily run
many parallel

5.1 CPU

The cpu benchmark (fig. 1) chosen was thefour in a
row benchmark fromfreebench.org. This is an integer-
bound cpu-intensive benchmark and it is free software. The
CPU2000 benchmark was not run because its memory re-
quirements could not be met, when running 16 VMs on a
4GB RAM machine. It can be seen that we used a dual
CPU machine, because the performance on 2 parallel runs
is as fast as on one. Almost all virtualisation environments
run at the same speed as technically possible, indicated by
the Opteron-SMP measurement.

5.2 Memory

The memory benchmark (fig. 2) does not reveil a large
performance-difference than the CPU benchmark does. We
used pcompress2, from the samefreebench.org.



Figure 1. The Since UML does not scale well
enough, we did not run 8 parallel VMs on it.

Figure 2. The memory benchmark pcom-
press2 makes use of memcopy and qsort

5.3 Disk

For the disk benchmark (fig. 3) we read 1GB from the
harddrive of every virtual machine. This size allows for
caching benefits by the underlying virtualisation environ-
ment. This effect does not take place for Xen, partially for
UML whereas the plain Opteron and the comercial system
do profit from caching.

Figure 3. The free unix tool dd was used to
read 1GB of data from the disk.

5.4 Kernel

The kernel benchmark (fig. 4) was run with “-j4” in order
to take effect of the two CPUs in the plain machine. We
can see that none of the virtualisation environments took
advantage of the many cpus. Newer versions of Xen as well
as the commercial product can, however, we didn’t use this
feature for the sake of comparability. With two and more
parallel runs we see that the commercial product and UML
scale less than Xen does.

6 Conclusion

Virtualisation provides an effective method for consoli-
dating hardware in Grid development and Grid training en-
vironments. It has proven to work in our development envi-
ronment for installation courses.

Xen provides a stable and free, yet performant environ-
ment for virtualisation. We do not foresee critical problems
in its application to production Grid environments, espe-
cially since the Xen team has a strong focus on security and
is actively developing Xen further. However, a minor issue
are incompatible versions of the TLS libraries that Xen is
currently incompatible with.

The Commercial product seems to scale better perfor-
mancewise, but unfortunately suffers from some load in-
equality when highly loaded.

Virtualisation appears to be mature enough to provide a
solution for the problems that arise with the need for dif-
ferent environments or Linux distributions that are required
when providing resources to the Grid.



Figure 4. The kernel compilation on an SMP
system shows less than 5% performance loss
for the Xen system. User Mode Linux shows
about 50% loss. Xen proves to scale very well
to 16 virtual machines.

References

[1] Ian Pratt. Xen and the Art of Virtualization. Technical re-
port, 2003. URL http://www.cl.cam.ac.uk/netos/papers/2003-
xensosp.pdf.

[2] Ian Pratt. Xen 3.0 Virtualisation, 2005. URL
http://makeashorterlink.com/?A25212A9B.

[3] T. Neward. Self modifying websites, 2002. URL
http://makeashorterlink.com/?U20A1269B.

[4] The Xen Team. Xen project homepage, 2005. URL
http://xen.sf.net.


